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Executive Summary 
 

Lifecycle Prognostic Algorithm Development and Application 
to Test Beds 

Introduction: 

On-line monitoring and tracking of nuclear plant system and component degradation is being 

investigated as a method for improving the safety, reliability, and maintainability of aging nuclear 

power plants.  Accurate prediction of the current degradation state of system components and 

structures is important for accurate estimates of their remaining useful life (RUL).  The correct 

quantification and propagation of both the measurement uncertainty and model uncertainty is 

necessary for quantifying the uncertainty of the RUL prediction.  This research project developed 

and validated methods to perform RUL estimation throughout the lifecycle of plant components. 

 

Prognostic methods should seamlessly operate from beginning of component life (BOL) to end of 

component life (EOL). We term this "Lifecycle Prognostics."  When a component is put into use, 

the only information available may be past failure times of similar components used in similar 

conditions, and the predicted failure distribution can be estimated with reliability methods such as 

Weibull Analysis (Type I Prognostics).  As the component operates, it begins to degrade and 

consume its available life.  This life consumption may be a function of system stresses, and the 

failure distribution should be updated to account for the system operational stress levels (Type II 

Prognostics). When degradation becomes apparent, this information can be used to again improve 

the RUL estimate (Type III Prognostics). This research focused on developing prognostics 

algorithms for the three types of prognostics, developing uncertainty quantification methods for 

each of the algorithms, and, most importantly, developing a framework using Bayesian methods 

to transition between prognostic model types and update failure distribution estimates as new 

information becomes available.  The developed methods were then validated on a range of 

accelerated degradation test beds. 

 

The ultimate goal of prognostics is to provide an accurate assessment for RUL predictions, with 

as little uncertainty as possible. From a reliability and maintenance standpoint, there would be 

improved safety by avoiding all failures. Calculated risk would decrease, saving money by 
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avoiding unnecessary maintenance. One major bottleneck for data-driven prognostics is the 

availability of run-to-failure degradation data. Without enough degradation data leading to failure, 

prognostic models can yield RUL distributions with large uncertainty or mathematically unsound 

predictions. To address these issues a "Lifecycle Prognostics" method was developed to create 

RUL distributions from Beginning of Life (BOL) to End of Life (EOL). This employs established 

Type I, II, and III prognostic methods, and Bayesian transitioning between each Type.  

 

Bayesian methods, as opposed to classical frequency statistics, show how an expected value, a 

priori, changes with new data to form a posterior distribution. For example, when you purchase a 

component you have a prior belief, or estimation, of how long it will operate before failing. As 

you operate it, you may collect information related to its condition that will allow you to update 

your estimated failure time. Bayesian methods are best used when limited data are available. The 

use of a prior also means that information is conserved when new data are available. The 

weightings of the prior belief and information contained in the sampled data are dependent on the 

variance (uncertainty) of the prior, the variance (uncertainty) of the data, and the amount of 

measured data (number of samples). If the variance of the prior is small compared to the 

uncertainty of the data, the prior will be weighed more heavily. However, as more data are 

collected, the data will be weighted more heavily and will eventually swamp out the prior in 

calculating the posterior distribution of model parameters. Fundamentally Bayesian analysis 

updates a prior belief with new data to get a posterior belief.  

 

The general approach to applying the Bayesian method to lifecycle prognostics consisted of 

identifying the prior, which is the RUL estimate and uncertainty from the previous prognostics 

type, and combining it with observational data related to the newer prognostics type.  The 

resulting lifecycle prognostics algorithm uses all available information throughout the component 

lifecycle. 

 

Objectives: 

The project had four major objectives related to the development and validation of lifecycle 

prognostic methods and algorithms. Each of these objectives were completed during the project. 

Uncertainty Estimation Quantification: 

The Type I, II, and III prognostic models were enhanced to take into consideration all the major 

sources of uncertainty (initial degradation level, uncertainty inherent in the historical failure time 
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distribution, measurement uncertainty, and failure threshold uncertainty) and produce a failure 

distribution output rather than a RUL point estimate. The resulting RUL predictions are failure 

distributions which inherently consider the combined uncertainty sources. 

Lifecycle Prognostic Algorithm Development: 

The RUL probability distributions produced by the prognostic models in each stage of the 

component lifecycle are used as Bayesian prior for the next stage of the lifecycle.  The Type I 

model output is used as a prior for the Type II model, and its output is used as the prior for the 

Type III model.  In cases where stress information (Type II) is not available or useful, Type I 

outputs are directly used as Type III model priors.  These Bayesian transitioning methods were 

developed and utilized to transition between the three prognostic categories to form a single 

prognostic system to estimate RUL over the life of the process or component. This is termed 

Lifecycle Prognostics. 

Method Integration and Toolbox Development: 

The uncertainty analysis quantification techniques and Bayesian transitioning algorithms were 

integrated into a MATLAB based Process and Equipment Prognostics toolbox which was merged 

and integrated into the Process and Equipment Monitoring toolbox resulting in a new toolbox 

which performs process and equipment monitoring and prognostics (PEMP).  This PEMP toolbox 

was developed with graphical user interfaces and documented with a user manual and tutorial. 

Validation of Methods using Accelerated Degradation Test Beds: 

Five accelerated degradation component test beds were developed and used to collect data used to 

validate the Lifecycle Prognostics algorithms. The first three were constructed on-site at the 

University of Tennessee: 

 

1. A heat exchanger test bed was developed to track degradation due to fouling. The 

temperatures, flow rates, and pressure were monitored to accurately track the heat 

transfer as the exchanger degrades.  

2. A motor test bed was developed to collect data from 5-HP general-purpose, 3-phase, 

3600 RPM induction motors.  The motors were subjected to cyclic thermal aging 

processes designed to induce accelerated insulation breakdown and corrosion within the 

motors. These tests were run for close to 18 months with temperatures increased during 

the last few months.  Several parameters such as vibration, motor current, motor voltage, 

and acoustic data were collected.  The insulation of the incoming wires was found to be 
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the weak point resulting in sudden, random failures, and Type III prognostics was not 

successful. Additional testing using motor overload to incite insulation degradation and 

winding-to-winding short is continuing. 

3. The third test setup consisted of neoprene pump impellers, which were subjected to high 

levels of heat stress. During testing, the vibration, differential pressure, and current of the 

pump were monitored to track degradation of the impellers at different operating 

conditions.  

 

At Pacific Northwest National Laboratory (PNNL), a passive component material test bed 

was constructed to generate degradation data for fatigue of metal components. These data 

were shared with the University of Tennessee, and prognostic algorithms proved successful. 

A fifth test bed for bearing failure by Analysis and Measurement Services Corporation 

(AMS) was developed and data provided to UT was also used to validate the prognostic 

algorithms.  All five test beds resulted in run-to-failure degradation data that were used to 

validate the lifecycle prognostic modeling algorithms. This project successfully developed 

and validated a holistic Lifecycle Prognostics method, in which Bayesian transitions were 

applied.  

 

Additional Accomplishments: 

The following is a summary of additional accomplishments made during this research: 

 The project PI and the Co-PI were engaged in three synergistic research projects. One of 

these was a DOE STTR Phase-1 project with the industrial partner, AMS, with an emphasis 

on Small Modular Reactor (SMR) fault monitoring.  Phase-2 of this project is on-going with 

the University of Tennessee as a collaborating institution. The second involved collaboration 

with Korea Atomic Energy Research Institute (KAERI) on a DOE I-NERI project and was 

related to monitoring safety critical functions during beyond design basis accidents in light 

water reactors. The latter also addresses station blackout, remote sensing, self-powered 

detectors, energy harvesting, and wireless communication. The third collaborative project 

was titled Integral Inherently Safe Light Water Reactor (I2S-LWR), with Georgia Institute of 

Technology as the lead for this NEUP-IRP.  These indicate the value of this NEUP project in 

enhancing the safety and operational reliability of both existing and future nuclear power 

plants.  

 Several funded students completed their MS and PhD degrees: 

o Eric Strong (MS Reliability and Maintainability Engineering, 2013) 
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o Tutpol Ardsomang (M.S. Reliability and Maintainability Engineering, 2013, funding 

by home country) 

o Alan Nam (M.S. Nuclear Engineering, 2013) 

o Matthew Tong (M.S. Nuclear Engineering, 2013) 

o Eric Strong (Ph.D. Nuclear Engineering, 2014) Dissertation title: “Development of a 

Method for Incorporating Fault Codes in Prognostic Analysis”  

o Alan Nam (Ph.D. Nuclear Engineering, expected May 2015) Dissertation title: 

“Bayesian Optimization for Fusion of Multiple Prognostic Methodologies” 

 Journal articles published or in press: 

1. Nam, A, M. Sharp, B.R. Upadhyaya, and J.W. Hines, “Lifecycle Prognostic Algorithm 

Development and Application to Test Beds”, Chemical Engineering Transactions, Vol. 

33, 2013 

2. Sharp, M., Coble, J., Nam, A., Hines, J., and, Upadhyaya, B. "Lifecycle Prognostics: 

Transitioning Between Information Types", Invited by the Journal of Risk and 

Reliability, 2014, In Press. 
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2. Welz, Z., M. Sharp and J.W. Hines, "Prognostics for Nuclear Power Plant Life 

Extension”, Invited by the International Journal of Prognostics and Health Management 

(IJPHM) 2014. 

3. Barbieri, F., J.W. Hines, M. Sharp, and M. Venturin, “Sensor-Based Degradation 

Prediction and Prognostics for Remaining Useful Life Estimation – Validation on 

Experimental Data of Electric Motors”, Submitted to the International Journal of 

Prognostics and Health Management (IJPHM) 2014 special issue on Nuclear Energy 
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 External Reports: 

1. Coble, J.B., P. Ramuhalli, L.J. Bond, J.W. Hines, B.R. Upadhyaya, "Prognostics and 

Health Management in Nuclear Power Plants: A Review of Technologies and 
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1. Introduction 

1.1 Background and Project Objectives 

On-line monitoring of nuclear plant system degradation is quickly becoming a crucial 

consideration as the licenses of many nuclear power plants are being extended. Accurate 

measurement of the current degradation of system components and structures is important for 

correct estimates of their Remaining Useful Life (RUL). The propagation of the uncertainty 

involved in both the measurements and model construction of these system components is vital in 

finding the uncertainty of the overall RUL calculation of the system. 

Prognostics involves predicting the amount of time or cycles that a system component will 

continue to meet its design specifications. The amount of time until a system component fails to 

meet its design specifications is also called the RUL. A useful way to specify the RUL is not 

merely by a point estimate, but rather by a distribution of the component’s probability of failure. 

During the early life of the component, the probability of failure might be very low, while a 

component later in life will have a much higher probability of failure. One of the goals of this 

project is to develop techniques for using uncertainty in the measurement and system models to 

construct the probability of failure distributions.  

On-line, continuous, or periodic equipment health monitoring systems are made up of several 

modules that solve specific tasks.  Data collected from the component or system of interest is 

used for monitoring purposes.  Component monitoring usually consists of comparing current data 

to expected normal operational data to detect small changes that are related to equipment 

degradation.  The onset of equipment degradation is commonly called a fault.  When a fault is 

detected, a diagnosis module is activated to identify the location and type of fault.  Fault 

identification is important because different faults progress to failure in different and predictable 

ways and therefore require different prognostic models.  Once the fault is identified, a prognostic 

model is activated which uses information such as current and past environmental and usage 

conditions, current and past operational sensor data, and historical failure data for like 

components to predict an item-specific probability of failure distribution. 
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Figure 1.1-1 Prognostics and Health Management System 

Prognostics methods can be categorized by their architecture, how they operate, the results format 

they produce, or through several other means.  An approach that may be most instructive is to 

categorize them by the type of information they use to make RUL estimates, resulting in three 

prognostic method types.  The most common is Type I, which is the topic of most reliability 

engineering texts. Additionally, Type II and Type III prognostics use operational and condition 

data to provide more accurate and precise RUL predictions.  The three prognostic types are 

briefly discussed below.    
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Figure 1.1-2 Prognostic Method Types 

Type I:  Reliability Data-based Prognostics 

These methods consider historical time to failure data, which are used to model the failure 

distribution for current system times.  They estimate the life of an average component under 

average usage conditions. The most common method is Weibull Analysis and has been well 

studied for several decades.   
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Type II: Stress-Based Prognostics 

A readily apparent disadvantage of reliability data-based prognostic models (Type I) is that they 

do not consider the operating condition of the component. However, components operating under 

harsh conditions would be expected to fail sooner and components operating under mild 

conditions to last longer than the average failure time.  A group of prognostic methods that takes 

the operating conditions under consideration is aptly named stress-based prognostics. Examples 

include the proportional hazards model and Markov Chain (MC) models. 

Type III: Effects-Based Prognostics 

Effects-based prognostic models use degradation measures to form a prognostic prediction.  A 

degradation measure is a scalar or vector quantity that numerically reflects the current ability of 

the system to perform its designated functions properly. It is a quantity that is correlated with the 

probability of failure.  A degradation path is a trajectory along which the degradation measure 

evolves in time towards the critical level corresponding to a failure event. Effects-based 

prognostics models track the degradation (damage) as a function of usage and predict when the 

total damage will exceed a predefined threshold that defines failure.  There are several 

mathematical approaches to model cumulative damage such as Markov Chain-based models, 

general path models, and particle filters. 

For prognostics to be useful, the methods should seamlessly operate from beginning of 

component life (BOL) to end of component life (EOL).  We term this "Lifecycle Prognostics." 

When a component is put into use, the only information available may be past failure times, and 

the predicted failure distribution can be estimated with reliability methods such as Weibull 

Analysis (Type I).  As the component operates, it begins to consume its available life.  This life 

consumption may be a function of system stresses and the failure distribution should be updated 

(Type II).  When degradation becomes apparent, this information can be used to again improve 

the failure distribution estimate (Type III).  Current research focuses on developing methods for 

the three types of prognostics.  This research project will develop a framework using Bayesian 

methods to transition between prognostic model types and update failure distribution estimates as 

new information becomes available. 

The four primary objectives of this research included: 

 Develop methods to formulate and integrate models from the three prognostics categories 

into a single prognostic system to estimate RUL over the life of the component. 
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 Develop techniques to estimate uncertainty and produce a failure distribution output from 

each of the prognostic model types. 

 Integrate the models and methods developed in objective 1 into a toolset to provide a formal 

method for prognostics development that can be used for prognostics in general, whether it is 

for active and passive components or systems. 

 Validate the methods on a range of test beds. Several test beds that were constructed to 

validate the Process and Equipment Monitoring (PEM) algorithms were also used to validate 

the Process and Equipment Prognostics (PEP) algorithms.  

Each of these objectives was successfully completed. 

1.2 Research Tasks 

Listed below are the milestone tasks and a short description of their completion. 

Task 1. RUL uncertainty estimation techniques were developed for each model type 

resulting in POF distributions rather than point estimates. Methods were developed for 

Type II and III prognostics that incorporate stressor measurement uncertainty prognostic 

parameter uncertainty, model uncertainty, and model misspecification to produce POF 

distributions.   

Task 2. A Bayesian method for transitioning between POF distributions for Type I, II, 

and III methods was developed. This is termed Lifecycle Prognsotics.   

Task 3. Performance measures were developed for the prognostics models.  Recently, 

NASA has reported some potential ideas to assess prognostic model performance.  This 

task integrated those performance metrics, along with several developed by the research 

team, into the prognostic model development framework so that models could be 

optimized and model algorithm performance could be compared. 

The second year tasks consisted of the following: 

Task 4. The prognostic algorithms and their Bayesian updating and transitioning 

algorithms were integrated into a Process and Equipment Prognostics (PEP) Toolbox to 

provide a formal method for prognostics development that can be used for prognostics in 

general, whether it is for active or for passive components or systems (electronics, 

structure, equipment, etc.) 
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Task 5. The PEP toolbox was integrated with the Process and Equipment Monitoring 

(PEM) toolbox resulting in a powerful set of tools that could be used to develop models 

for on-line equipment condition monitoring, anomaly detection, anomaly interpretation, 

and prognostics for both passive and active components. 

Task 6. Metrics and criteria were developed to select appropriate and optimal prognostic 

models for specific applications and sets of data. 

Task 7. Three test beds were specified and constructed for prognostic algorithm 

validation. These included accelerated degradation test beds for motors, pumps, and a 

heat exchanger.  

The third year tasks were: 

Task 8. The three test beds were used to collect environmental stressor, degradation and 

failure data.  These tests took on the order of days for the pumps, weeks for the heat 

exchanger, and months for the motors.  

Task 9. The PEM and PEP Toolboxes were used to develop and optimize monitoring and 

lifecycle prognostic models for the collected data. The MATLAB-based development 

suite was used to develop detection and identification modules, and construct prognostic 

information rich features. The PEP toolbox was used to develop the lifecycle based 

prognostic models with Type I POF distribution estimation, Type II model development 

using environmental information, optimal prognostic parameter generation, and Type III 

prognostic model development. Bayesian methods were used to update estimates and 

transition between model types.  

Task 10. The developed prognostic methods were validated using the collected data sets. 

Task 11. Procedures and a user manual for the MATLAB-based toolsets were developed 

for implementation of the lifecycle prognostic algorithms. 

Task 12. Finally, a final report was prepared. 
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1.3 Report Organization  

Each chapter after the introduction enumerates the assigned project tasks, details of work scope 

and a summary of work completed are provided. The final chapter includes a summary and 

recommendation for future work. The appendix contains user guides for the MATLAB toolboxes 

developed for monitoring and prognostics. 
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2. Task 1: Uncertainty Estimation Techniques 
There are primarily four sources of uncertainty that are important to assess during prognostic 

modeling: initial degradation level, uncertainty inherent in the historical failure time distribution, 

measurement uncertainty, and failure threshold uncertainty. By understanding and accounting for 

these sources of uncertainty, researchers will be able to not only create more accurate models, but 

also provide a better assessment of the predictions and information provided with those models. 

Both literature surveys and data method investigations into proper quantification and propagation 

of the sources of uncertainty within various types of model were performed in the completion of 

this task. The primary focus of this investigation centered on, but was not strictly limited to; 

online effects based (Type III) prognostic models including the General Path Model (GPM) with 

and without Bayesian updating. The results of this investigation are provided in this section. 

2.1 Literature Survey 

At the start of investigation into this task, a literature survey was carried out to form the basis of 

analysis. The topics included the generation of simulated data, regression analysis applied to 

feature extraction, Monte Carlo simulations of prognostic models, and other applied prognostic 

methods.    

2.1.1 Data Simulation 

A key aspect of this study is the development and implementation of prognostic models that 

simulate and demonstrate the component degradation through time. According to a paper by 

Laskey in 1996, there are two types of models that can be used for research purposes. 

The first type is an exploratory model, which lays the theoretical groundwork for identifying what 

needs to be determined and by what method. A good example is the use of simulated data based 

on algebraic functions, varied by normally distributed parameters. The data that will be used to 

test the algorithms is idealized, in that the underlying properties are clearly defined and the 

properties of the algorithm can be researched and understood using the model.  

The second type is referred to as a consolidatory model. The consolidatory model is more 

practical and generally useful for more detailed experiments that may replace an actual system. 

The key difference between exploratory and consolidatory modeling is that exploratory modeling 

is designed to suit the test algorithm, while a consolidatory model is designed to simulate a real 

world system. An example of this is simulating a virtual water pump loop based on first principle 
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models. The outcome of applying the algorithm will show an expected result if applied 

theoretically to a real world system.  

This project focuses on primarily exploratory modeling, identifying the relationships between 

various model assumptions and outputs. An example of this is a basic linearly increasing 

degradation model, which will be defined later in this section.  

          Equation 2-1        Equation 2-2 Equation 2-1 

Equation 2-2 shown below, was used to create the simulated data, which will later be modeled 

using a General Path Model (GPM). General Path Modeling is a method of data extrapolation 

through parametric function fitting and linear regression. Further explanation of the use of the 

GPM is discussed later in this section. It is important to select the correct type of GPM based on 

the data, such as linear, quadratic, or exponential, because an improperly chosen model not suited 

to a particular data set can negatively affect the uncertainty values of the model predictions. For 

this study the simulated data was constructed using the basic linear equation.  

           Equation 2-1 

In           Equation 2-1, Ɛ is a normally distributed stochastic error, β1 is a random parameter 

chosen to represent initial degradation, and β2 is a normally-distributed random parameter chosen 

to represent the rate of degradation. The data used in this section has the population parameters 

normally distributed about β1= 0.2, β2=1.2, and Ɛ=0. The linear model shown in the equation is 

commonly used and can be found detailed in other sources such as Nagi 2009 and Wiesel 2008. 

Using this equation, a simulated historic population of degradation pathways was created and is 

shown in Figure 2.1-1.  
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Figure 2.1-1 Linear General Path Model 

The fifty historic degradation pathways in Figure 2.1-1 represent the lifecycle of a single 

simulated component from the total population. The red horizontal line crossing the model paths 

is the selected critical degradation threshold, beyond which the component is considered to have 

failed or no longer meets specifications. In this example the threshold is a hard limit for defining 

failure, but the idea of a soft and failure limit distributions will be explored in later sections.  

Although linear models are often found in real world applications, it is important to note that 

other model types, such as quadratic and exponential may also be useful in particular 

applications. The functional form of an exponential model developed by Coble (2010) is shown 

in        Equation 2-2.  

        Equation 2-2   

Figure 2.1-2 shows an example of an exponential GPM that was developed with fifty degradation 

paths. As in the previous example, the red line represents a critical failure threshold, the 

components are considered to have failed after the degradation paths cross this line.  
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Figure 2.1-2 Exponential General Path Model 

2.1.2 General Path Model Estimations and Associated Uncertainty 

The GPM approach to prognostics applies a known functional form to a degradation pathway and 

extrapolates to a critical failure threshold. Important assumptions of the GPM are that the 

degradation paths can be fitted to a known functional form and that there is a critical degradation 

threshold. The model can take the form of any dominantly monotonic function across the region 

of interest. Some examples of this include linear, quadratic, exponential, etc. A critical 

degradation or failure threshold is also required, the crossing of which indicates failure. This 

serves as the target that the paths are extrapolated to in order to determine estimated failure times.  

RUL estimates are one of the values of interest when using a prognostic algorithm. In order to 

place an appropriate level of confidence in these estimates, RULs should be accompanied by an 

estimation of the associated calculated uncertainty. Uncertainty is present in a multitude of 

sources, each of which should be understood and analyzed in order to find the total uncertainty in 

any RUL estimation. This research focuses on the sources of uncertainty that are associated with 

the GPM. Calculating the parameters for the GPM is accomplished using a combination of 

Bayesian linear regression and Ordinary Least Squares (OLS).  These methods and how they 

affect uncertainty will be discussed in this section. 
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Bayesian Updating: 

Bayesian linear regression is a method that can use prior assumptions or information along with 

current data to estimate the parameters in a regression model. Bayesian uncertainty analysis is 

based on Bayes’ Theorem, which is presented in                           Equation 2-3 [Leon 2008]. 

                                                         Equation 2-3 

In this equation θ represents the model parameters and Y is a set of independent measurements. 

P(θ) is the prior distribution, P(Yǀθ) is the likelihood function, and P(Y) is the integral of P(θ)P(Y 

ǀ θ) over all of θ. A full discussion of the Bayesian linear regression method as applied to RUL 

estimation can be found in Usynin 2007. 

Other forms of Bayesian updating and Bayes theorem exist and can be applicable in particular 

instances, such as Bayesian Inference [Engel 2000]. Another application uses Bayesian updating 

with a particle filter example [Saha and Goebel, 2009]. Although these are not discussed in detail 

here, their usefulness is well documented in other publications. 

Ordinary Least Squares: 

The OLS method is an error minimization technique commonly used to estimate unknown 

parameters in a linearly transformable regression model. The regression parameters are calculated 

using the least squares equation.  

                        Equation 2-4 

Using these parameters with the GPM allows for extrapolation and measurement error estimation. 

Further information can be found in Usynin 2007.  

Population Estimates: 

Another method for RUL estimation is direct calculations, otherwise known as population 

estimates. Population estimates can be essentially represented by mean and variance calculations 

of RUL times, but there are a variety of ways to illustrate such estimates. A good source on RUL 

uncertainty can be found in Engel 2000. Engel analyzes four types of probability density function 

(PDF) applications for RUL. These four types are: a true PDF priori at time zero; use of a 

modeled PDF to predict a true PDF at time zero; a true posteriori PDF conditioned using 
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observations taken during use of a component; and creation of a modeled PDF that estimates a 

true posteriori PDF while component is in use. 

2.1.3 Monte Carlo Simulations 

Monte Carlo is an estimation method that employs repeated simulation trials to produce a 

distribution of probable results. Due to the fact that a distribution is inherently produced during 

this process, Monte Carlo is very useful as a means for estimating uncertainty. Wang 2011 and Jie 

2011 give methods for calculating uncertainty using Monte Carlo. The uncertainty calculation 

applies multiple model iterations and taking the mean and standard deviation of the individual 

results to find a point estimate and uncertainty. 

2.2 Uncertainty   

Understanding the uncertainty associated with RUL estimates is an important area of prognostics. 

For each of the three types of prognostic models, there exist different methods to produce RUL 

and uncertainty estimates. Uncertainty estimates can be in the form of 95% confidence intervals 

and using PDFs,, as found in Meeker and Wiley 1998. The following section will detail common 

estimation techniques for producing RUL and uncertainty estimates for each type of prognostic 

model. 

The three categories of prognostic methodologies are identified as Type I, II, and III and are 

differentiated by the type of information used to produce the estimate. Type I estimates are the 

more traditional failure time analyses. They are most applicable when only historical failure time 

data is available. Type II estimates employ conditions and states to augment predictions. Lastly, 

Type III uses degradation information in the form of a health indicator of a system or component 

to obtain RUL estimates. 

2.2.1 Type I Theory 

Type I analysis is defined as the study of lifetime data, including both known failure times and 

censored failure times. This method characterizes the average component lifetime and assumes 

that future components will fail on a similar time scale based of the past failure time distribution.  

In the following example, the failure times of a set of components will be fitted to a distribution, 

and the distribution will be used to determine the conditional probability of the component being 

tested. This has the form of                                  Equation 2-5 (Coble, 2011) with R being 

reliability. 
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                                   Equation 2-5 

The RUL is determined by the Mean Residual Life (MRL) in                         Equation 2-6, where 

S is survivability and t is time. This function adjusts according to time already spent operating, as 

seen by the lower limit t of the function. 

 
MRL(t) 

1

S(t)
S(u)du

t




                        Equation 2-6 

The Mean Residual Life is calculated at the point where 50% of the components are expected to 

fail while adjusting for the current time the component has already operated. 

2.2.2 Application 

To demonstrate the use of Type I conditional reliability, Figure 2.2-1 shows a selection of failure 

time data, which is the only data needed for Type I analysis. The figure shows the failure times 

and frequency of 135 units, which had average failure times between 100 and 140 time units. 
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Figure 2.2-1 Histogram of Failure Times 

Type I analysis begins with creating a distribution that fits the trend of the historic failure times. 

Four distributions, which include normal, lognormal, exponential and Weibull, are mapped to the 

histogram and are compared in Figure 2.2-2. The distribution that best fits the failure times will 
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then be used to create reliability and survival functions, these will be used to determine the RUL 

of this system at different system times. 
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Figure 2.2-2 Histogram of Failures and Mapped Distributions 

Figure 2.2-2 shows the different distribution fits that can be compared visually. Table 2-1 

provides a quantitative method of comparing these distributions by comparing the calculated log-

likelihood values.The distribution with the lowest value is chosen as the best fit.  

 

Table 2-1 Distribution Log-Likelihood Values 

Distribution Log-Likelihood 

Normal 525.62 

Exponential 783.91 

Weibull 517.75 

Log Normal 528.49 

 

According to Table 2-1, the best distribution fit is Weibull, followed closely by the normal 

distribution. To predict RUL it is important to know the amount of time an unfailed unit has been 

operating. For demonstration, Table 2-2 predicts when an average unit will fail when operating at 

times 0, 10, 50, 100, and 140. It is important to note that the predicted failure times are the 

averages of what is known. The results will be applied generally for all cases. 
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Table 2-2 Predicted RUL with Uncertainty 

 

 

It should be noted that the first four RUL values differ from the fifth. The first three failure times 

have the RUL values centered on time 124.04, but the predicted failure time decrease as the unit 

survives longer. This reduction in RUL happens because when 50% of the failures are expected to 

occur the unit may still be operational and the RUL estimates must be adjusted by using the 

MRL, usually calculated by taking half the value of the expected remaining survivability. In 

Figure 2.2-3, the reliability function for the developed Weibull based model is shown.  
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Figure 2.2-3 Weibull Reliability Curve 

As can be seen in Figure 2.2-3, at time 140 the probability of failure is not zero and still has an 

expected RUL. The upper and lower uncertainty bounds are calculated similarly to the mean 

Time Run Predicted RUL 95% Confidence Interval 

0 124.04 96.32   140.95 

10 225.04 86.32   130.95 

50 74.04 46.36   90.95 

100 24.59 3.72   41.07 

140 2.01 0.08   8.12 
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calculation but at a different percent. The high bound is calculated at 97.5% and the low bound at 

2.5% of remaining survivability. 

2.2.3 Type II 

Type II methods make RUL predictions for the lifetime of an average component in a specific 

environment. Some of the main assumptions that should be considered when using Type II 

prognostics are that components operating in similar conditions will degrade in a similar fashion, 

and that variation between units is not significant.  In this demonstration, the Type II method that 

will be discussed and applied is the Markov Chain model.  

2.2.4 Markov Chain Theory 

The Markov Chain model can be applied to prognostics in two ways: condition based information 

can be used to predict future operating conditions of a component, and a Markov Chain can be 

used to create failure time predictions. The techniques necessary for this application are the 

creation of the transition matrix, degradation or damage calculations, and Monte Carlo 

simulations [Coble 2010]. 

The first step is identifying the possible conditions by forming the transition matrix, Q, and the 

initial condition probability vector, U. As mentioned before, a Markov Chain uses probabilities to 

predict an operating condition (OC) or state, a decision that is independent of the components 

current state.  This is done through a transition matrix shown in                               Equation 2-7. 

                              Equation 2-7 

The probability P is in form Pij where 'i' is the current state and 'j' is the end state. To quickly 

summarize the Q matrix, the probability that operating condition (OC) 1 will remain in operating 

condition 1 is P11. The probability that OC 2 will end in OC 3 is P23. This 3x3 matrix implies that 

there are three possible operating conditions. It is also necessary to calculate the probability of the 

initial starting condition. This is defined by vector u, which has a vector length equal to 'i' and the 

probability of the 'i'th unit is the probability of starting in that OC. 

At each state a certain amount of damage or none at all can result. The amount of damaged 

received can be estimated through analysis of the data. A simple equation to calculate degradation 

with has the form of Equation 2-8. 

      degradation=d1*t1+d2*t2+d3*t3+…+dn*tn            Equation 2-8     
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In Equation 2-8 di is a degradation parameter that can be estimated and ti is the time in each 

state. A technique to find the parameter is to use linear regression to determine the average 

damage received by a component when operating in a specific OC for a full duty cycle. A duty 

cycle is the time spent in a specific state and is a fraction of the total operating condition time. 

Some assumptions of this method are that there is a linear fit to the degradation model and that 

there is a failure threshold, the crossing of which implies failure. When both the probability 

matrix and degradation estimates for a set of unfailed cases are obtained, the RUL can be 

estimated through Monte Carlo simulations. Using Monte Carlo simulations produces a range of 

estimated results that can be mapped to a distribution. To estimate the RUL of a component that 

has yet to fail, possible paths to failure from the last observed point are created. The result will be 

a distribution of failure times that inform the user of when failure is most likely to occur.  

2.2.5 Markov Chain Application 

To show an application of a Markov Chain model, operating condition information from 100 

failed tires are used to develop a probability matrix (Q), degradation estimates for each operating 

condition, and remaining useful life probability distribution for three unfailed cases. There are 

three operating conditions used for these tires that pertain to road conditions. The first condition 

is operating on normal road conditions, the second is on off-road conditions, and the third is when 

the tire runs on high slip conditions.  Plotting out the data from a failed tire and an unfailed tire 

demonstrates three distinct states, shown in Figure 2.2-4.  
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Figure 2.2-4 Failed and Unfailed Operating Conditions 

The next step in developing a Markov Chain model is to find the transition probability matrix Q, 

using the failed data sets.  This Q matrix can be populated by summing the total number of 
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occurrences for each possible transition, and dividing by the total number of each state transition. 

Table 2-3 shows the counts associated with each transition and the sum across the operating 

conditions. 

Table 2-3 Q and u Matrices 

OC Sum Counts u Q 

1 14137 7016 4371 2750 0.26 0.4962 0.3091 0.1945

2 10292 4165 4050 2077 0.55 0.4046 0.3935 0.2018

3 11963 2958 1842 7163 0.19 0.2472 0.1539 0.5987

 

According to the Q matrix values shown in the previous table, the transition with the highest 

probability is for OC 3 to stay in OC 3, and the least probable transition is for OC 3 to transition 

to OC 2. The u matrix represents the probabilities of each initial condition, the most probable 

starting condition being OC 2. 

The next step in the process is determining the damage rates of each operating condition. Table 

2-4 shows the damage coefficients for this set of data. These were found using linear regression 

and by assuming that the sum total of damage for each case based on these conditions must equal 

100%.  

Table 2-4 Damage Coefficients 

OC Damage Coefficient Total Damage

1 0.1005 Mean: 99.989 

2 0.2488 Std: 0.3318 

3 0.5003  

 

After calculating the damage coefficients, a degradation graph over time was created for the 

failed and unfailed data sets. Figure 2.2-5 shows the failed and unfailed degradation paths in 

comparison with each other as well as a soft critical degradation threshold. It is important to note 

that the degradation threshold is normally distributed with a mean of 99.99 and standard deviation 

of 0.3318.  
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Figure 2.2-5 Degradation Plot of Tire Data with Soft Threshold 

Using the Q matrix and the damage coefficients developed with the failed tire data sets, it is 

possible to create a TTF or RUL prediction.  

 

Table 2-5 highlights the results of this process for the three separate query degradation paths, 

shown as the blue lines in Figure 2.2-5. Each prediction is created by first simulating 1000 

possible continuing pathways for each query case. This is done by applying the appropriate 

amount of damage from simulated movement between conditions, then calculating the average 

failure time for all the simulated pathways.  

 

Table 2-5 Unfailed Cases TTF Estimates 

Unfailed Case Time Cycles TTF (Cycles) Std. Dev

1 54 366.5 15.2 

2 117 368.2 13.7 

3 236 346.7 9.7 

Population - 365.9 17.1 
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Notice how cases 1 and 2 have very similar TTF estimates, while case 3 does not. For 

comparison, a population estimate was created using a simulation without any unfailed cases. 

Important to note also, is that as the known path progresses in cycles, the standard deviation of 

those estimates goes down. This is equivalent to a drop in the overall uncertainty for those 

particular cases. Figure 2.2-6 below, shows the empirical Probability Density Functions (PDF) of 

the predicted failure times for each of the unfailed cases and of the population estimate.  

 

Figure 2.2-6 Distributions of Predicted Failure Times for Unfailed Cases 1:3 & Population 

The distribution variance for each of these cases can be equated to the uncertainty of the 

estimates. These PDFs were formed using an empirical kernel smoothing technique base on the 

predicted failure time data, though other empirical density estimating techniques may be equally 

valid. 

To conclude, predictions from a proof of concept Markov Chain model are used to estimate the 

Time to Failure (TTF) or RUL of tires when only the past and current operating condition data is 

known. A Markov Chain model is a memory-less process of states, or operating conditions, 

where the probability of moving from one state to the next is known and takes the form of the Q 

matrix. Using failed tire data with three distinct operating conditions, a probability matrix, Q, was 

developed for transitioning between operating conditions and vector u was found for predicting 

starting condition position. Using the same failed tire data, damage estimates were also created 
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for each operating condition. Finally the probability matrix Q and the damage estimates were 

combined to form a predictive model that was simulated 1000 times for each unfailed case 

producing three RUL distributions.  A soft degradation threshold was also used based on the 

calculated damage values. 

The uncertainty distributions for the unfailed cases 1, 2, and the population estimate were very 

similar, being close in both mean and standard deviation. Case 3 though, had a slightly different 

mean, roughly 6% smaller than the other three estimates. In fact, case 3 exists on the edge of case 

1 and 2's failure distributions. This difference in TTF estimates is likely due to the fact the the 

majority of the observed paths were in lower damage states.  

For a more complicated system (a system with more operating conditions) it would be fairly 

simple to create a larger Q matrix. Using a Markov Chain to predict failure would be more 

difficult if no failure was observed, if system repair needed to be accounted for, or if there were 

state changes inconsistent in time. Using Monte Carlo allows for easy estimation of uncertainty. 

2.3  Type III 

Type III predictions of RUL and TTF provide estimates specifically for the individual component 

being tested. While Type I generalizes information about a components lifetime, and Type II 

generalizes information about a component within a known environment and/or operating 

condition, Type III tailors RUL predictions based on sensed signal information taken from a 

particular unit that relate directly or indirectly to degradation. This takes into account not only the 

individual components’ operating condition and environment, but also some quantitative value of 

wear, which can be trended and predicted using techniques such as GPM. 

Discussed below are the approaches for developing this type of model and comparing three types 

of fittings: linear, quadratic, and exponential. Parameters of the equations are approximated from 

linear and non-linear regression. The section will later connect model parameters with prediction 

uncertainty. 

2.3.1 Type III GPM Model Types 

The equations listed in this section are meant to describe the degradation process by fitting it to 

some known functional form. The first fitting will be a linear model shown in                       

Equation 2-9. 

                      Equation 2-9 
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In                       Equation 2-9 y describes the degradation path, and β1 and β0 are the parameters. 

With this fitting, the parameter β must be found to form a prediction of y. Next,                          

Equation 2-10 is a quadratic model. In this equation there are three parameters that need to be 

solved for. 

                         Equation 2-10 

Finally there is an exponential model shown in                                   Equation 2-11.  

                                  Equation 2-11 

Using the exponential functional form it is also possible to linearly transform the paths using a 

natural log and solving for the parameters as one would for a linear function. 

2.3.2 Type III GPM Model Methodologies 

The three different GPM architectures presented in this section are functions that describe 

common trends in the evolution of degradation in many systems. Lu and Meeker first formally 

described the GPM and some of its applications towards crack growth in 1996. Figure 2.3-1 

illustrates some of the sources of uncertainty associated with any GPM. 
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Figure 2.3-1 Linear General Path Model Characteristics 

Each yellow line represents simulated component degradation paths from beginning of life to 

failure. The starting points of each line are represented by blue asterisks at time zero, and the 
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failure points are shown as the red asterisks. There are three PDFs that represent three basic types 

of uncertainty that can be visualized in this figure. The purple horizontal PDF represents variation 

in the Time of Failures (TOF). This is the actual distribution of failure times, and can be used to 

determine the accuracy of the predicted RUL values. The red PDF, labeled as the degradation 

threshold, represents the variation of degradation levels for the simulated components. Lastly, the 

green PDF represents the initial degradation levels, which could be attributed to manufacturing or 

installment differences. This distribution quantifies the variation in the beginning levels of 

degradation for a component. These, along with model uncertainty and any parameter regression 

uncertainty, are the basic sources of uncertainty for a GPM.  

2.3.3 Model Uncertainty 

As previously mentioned, there are multiple sources of uncertainty that are important to consider 

when applying the GPM for system prognostics. The sources covered within this section are the 

variability in the initial degradation amount, the uncertainty of the regressed model parameters, 

the measurement uncertainty, and the failure threshold uncertainty. The selection of a model type 

will also contribute to the uncertainty of the RUL prediction. If a linear model is used to 

determine degradation paths that are non-linear in nature, a model bias will occur and the 

uncertainty of the RUL estimate will be larger. The sources of uncertainty are analyzed using the 

three model fits previously discussed. The increase in degradation over time is assumed to be 

linear in parameters, linearly transformable and be fit to the three functional forms.  

Initial Degradation Uncertainty  

Initial degradation is the starting degradation level at time zero. While initial degradation is 

usually a minor form of uncertainty in a linear path model, it does influence the uncertainty in the 

RUL estimate. In                       Equation 2-9 it is shown that β0, the y-intercept, is the initial 

degradation component; therefore controlling the distribution of the initial degradation is a matter 

of setting the distribution of β0 in the model. In most uses though, the initial degradation 

parameter is constant and starts at zero, but if the effects of the initial uncertainty are substantial, 

one can map the initial degradation points to a normal distribution. This method is demonstrated 

in Lu and Meeker 1996. In practical applications, not all components are created equal. Errors 

and flaws in the manufacturing process can cause components to begin life at varying degrees of 

degradation; for example, the initial tread depth of a tire has some manufacturing variability. This 

variability in the manufacturing process can lead to initial variability in the degradation model. 

Prior Uncertainty 
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Prior information or knowledge can be used with Bayesian updating to develop better parameters, 

especially near the beginning of life. There are many methods for producing priors with a 

degradation model. Examples of methods for forming priors can be found in Usynin 2007. In 

Gabraeel and Elwany 2009, prior distributions are formed using the Bernstein Distribution, which 

is a gamma distribution of the RUL uncertainty when a linear path model is used with a hard 

degradation limit. Gutierrez-Pulido and Aguirre-Torres 2005 provide a more common and easily 

applicable method for forming prior distributions. Other sections provide further details of 

regression using Bayesian statistics. In their implementation, the models used are very general 

and have at most two parameters. Prior information comes in the form of mean and standard 

deviation of time-to-failures or as a quantile of time to failures. 

The priors used in the model for Bayesian methods are formed from model regression. As more 

data accumulates during component monitoring, the weights of the priors are decreased and the 

weighting of the data is increased. This was demonstrated by Usynin 2007. In other words, as 

more observed data becomes available, the RUL predictions become more certain. This is 

demonstrated in Figure 2.3-2 and Figure 2.3-3. It is easy to notice that in Figure 2.3-2 the 

Ordinary Least Squares (OLS) prediction is highly skewed away from an accurate prediction and 

has a very high uncertainty (blue shaded cone), while the Bayesian estimate is much more certain 

(brown shaded cone). In Figure 2.3-3 however, as more information becomes available the 

predictions both become more accurate and focused. The advantage of Bayesian methods that use 

prior information is an effective prediction early in life.  
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Figure 2.3-2 Model Uncertainty near Beginning of Life 

 

Figure 2.3-3 Model Uncertainty Later in Life 

 

Measurement Uncertainty 

Measurement uncertainty is a major source of uncertainty in model parameters and originates in 

the data collection process. Jie, Yun, and Wiesel (2008), demonstrate a method to simulate 

measurement data with Gaussian uncertainty.  The measurement uncertainty used in this analysis 
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was created using a normally distributed stochastic quantity of the form of N(μ,σ2), added to a 

linear function with the parameters β1=0.2, and β2=1.2. To demonstrate that an increase in 

measurement uncertainty increases the prediction uncertainty, Bayesian linear regression and 

OLS were applied at two different measurement noise levels. The difference in RUL uncertainties 

given increasing measurement uncertainty is presented graphically in Figure 2.3-4.and Figure 

2.3-5. 

 

Figure 2.3-4 Test and Estimated Time-to-Failure 

 

Figure 2.3-5 True and Estimated Time-to-Failure with Increased Measurement Uncertainty 
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The shaded lines represent the confidence limits, matching in color with the estimation method. 

Clearly the uncertainty in Figure 2.3-4 is less than the uncertainty in Figure 2.3-5, demonstrating 

that a higher measurement uncertainty leads to an increased uncertainty in the RUL estimate. 

Degradation Threshold Uncertainty 

Previously, the developed model used a critical degradation threshold that acted as a hard limit of 

failure. Figure 2.3-1 details a linear path model that has each component failing at varying 

degradation levels, this model .has no implicit degradation threshold. The threshold was 

quantified by creating a normalized PDF of the failure degradation levels. The PDF forms the 

basis of the new degradation threshold.  

Figure 2.3-6 shows how the model uncertainty and the threshold uncertainty are combined to 

form a prediction of the RUL distribution.  By first using OLS regression to determine the model 

parameters and their associated uncertainties, a Monte Carlo style simulation can use these in 

conjunction with the failure point distribution to find not only the most probable TTF, but also a 

quantifiable measure of uncertainty. For the case below, let the two regressed linear parameters 

be b1, and b2 with an associated confidence level of + or – E1 and E2 respectively. These are 

used as the mean and variance of two normally distributed, random sampling distributions of each 

parameter. By repeatedly randomly sampling a parameter from each of these distributions (B1, 

and B2), and also one from the failure point distribution (Y), a distribution of failure times can be 

formed by solving the linear equation (Y = B1 + B2x) for each set of samples parameters. This 

distribution provides not only a most probable time to failure, but also the associated uncertainty. 
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Figure 2.3-6 Soft Degradation Threshold Monte Carlo Estimate 

Figure 2.3-6 shows an average fit degradation path and its predicted RUL distribution, set at an 

average of the degradation distribution developed using the prior population data. The predicted 

RUL estimates form a normal distribution denoted in the horizontal magenta distribution. The 

Monte Carlo paths show degradation predictions, and the parameter distribution shows the 

distribution of the new data set. 

The lessons learned pertaining to linear degradation model uncertainty can be applied to non-

linear degradation model uncertainty. This includes linear regression of non-linear data, and non-

linear regression of non-linear data as well as quadratic and exponential models. 

2.3.4 Model Transformations 

Since uncertainty has been discussed, this section will focus on model types and algorithm 

predictions. When it comes to estimating the RUL of components with non-linear degradation 

paths, linear models will lead to less than ideal results. However, linear tools and algorithms can 

be directly applied and have straight forward uncertainty quantification methods. Therefore, it is 

of interest to use the flexibility of non-linear models with the tractability and robustness of linear 

models.  Non-linear models may require the use of a technique known as linear transformation to 

put them in a form where linear techniques can be applied directly. One purpose of linear model 

transformation is to create the linear relationships between variables. The correlation between x 

and y should not change after the transformation because this would imply that non-linearity 

exists between x and y.  
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Linear in Parameters 

Linear models are the most widely used empirical models. The term "linear" refers not to the 

shape of the path, but the linear addition of parameters. Theoretically functions such as sin(x), ex, 

and x2 can be included in linear models, as long as those terms have an additive effect on the 

response y.  

Quadratic Transformation 

To transform a quadratic, the response y is square rooted. The process is described in the                                

Equation 2-12. The model for the GPM has normally distributed parameters with mean and 

variance and a stochastic noise value.  

                               Equation 2-12 

The model and the transformed model are shown in Figure 2.3-7. The quadratic formula defines 

the left side of the figure and                                Equation 2-12 defines the path model of the right side. 

There are 500 paths that are shown in each graph. It is important to note that when the square root 

of the paths was taken, the square root of the critical degradation threshold was used as the new 

critical degradation threshold for the transformed model. Transforming the quadratic model is not 

necessarily needed to estimate the RUL of the simulated data. 
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Figure 2.3-7 Quadratic Model and Transformation 

Logarithmic Transformation 
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The exponential model has been defined previously, Figure 2.3-5 can be linear in parameters, 

depending on the model, but due to its non-linear nature, using a transformation is easier to 

analyze.  The transformation used is described in                   Equation 2-13. 

                  Equation 2-13 

The parameters in this equation are normally distributed with a mean and variance. There is also a 

stochastic noise value with a mean and variance. The critical degradation threshold for the 

untransformed GPM is e11. For the transformed GPM, the critical degradation threshold was also 

transformed in the same way, setting the critical threshold at 11. Exponential transformation is 

shown in Figure 2.3-8.  
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Figure 2.3-8 Exponential Model and Transformation 

The exponential model, post transformation, appears to be linear and is more evenly distributed, 

as the shape on the right side of Figure 2.3-8 is not as triangular as Figure 2.3-7. Calculating the 

RUL of the transformed data using a linear model produces predictions seen in Figure 2.3-9 and 

Figure 2.3-10. While it may seem that the transformed exponential model is the most certain 

model type demonstrated, it is not necessarily the case in reality. The data used is simulated and 

created ideally. This section on exponential transformation demonstrates how a non-linear 

problem can be solved linearly.  
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Figure 2.3-9 Exponential Transformation Beginning of Life RUL Estimates 

 

Figure 2.3-10 Exponential Transformation Middle of Life RUL Estimates 
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2.4  Non-Linear Uncertainty 

With non-linear models such as quadratic or exponential, a method using squared error multiplied 

by the t-distribution is used to produce 95% confidence intervals.  To demonstrate this method, 

simulated data, shown in Figure 2.4-1, is used to produce uncertainty calculations for quadratic 

and exponential regression. There are 500 simulated paths shown in green with a critical 

degradation threshold set at 50. Any simulated data past this threshold is extraneous. 
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Figure 2.4-1 Quadratic Simulated Paths 

For the uncertainty in these calculations, the intervals are the result of the squared error times the 

appropriate student t-distribution. The process requires regression coefficients beta, residuals r, 

and estimated coefficient covariance matrix SIGMA and is detailed in                                

Equation 2-14. 

 

 

 

                                     Equation 2-14 

The results of these calculations are that each of the parameter estimates will have confidence 

interval estimates as well. Using quadratic, exponential and Bayesian regression on a single 

randomly chosen path results in the three plots shown in Figure 2.4-2 below. 
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Figure 2.4-2 Quadratic and Exponential Predictions with 95% CI 

Since a quadratic model defines the simulated data, the quadratic regression on the top left of the 

figure has the smallest CI. The exponential fit is the least suited and has the largest CI. The 
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Bayesian quadratic regression appears to be worse than the simple regression. This is most likely 

due to how the Bayesian prior information added to the quadratic regression model is not 

informative, or due to a lack of noise. Residuals are shown in Figure 2.4-3. 
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Figure 2.4-3 Prediction Residuals 

The quadratic regression is the best fit, and the residuals appear to be centered on zero in the 

figure. The residuals are not zero due to the normally distributed noise. The size of the confidence 

interval appears to correlate with the variation of the residuals. The first half of the Bayesian 

quadratic residuals match the quadratics residuals but deviates, and the exponential residuals 

seem unrelated to either of the other two fits. 

Solving for the model as more data is added demonstrates how the confidence intervals change 

over time. Figure 2.4-4 and Figure 2.4-5 shows a quadratic and exponential prediction and the 

associating confidence intervals. Notice how the confidence intervals cannot be calculated for the 

entirety of the data. This is due to an over parameterization of the developed predictive model. 

Essentially the predictive model needs more data before confidence intervals can be calculated. 
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Figure 2.4-4 Quadratic RUL Prediction 
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Figure 2.4-5 Exponential RUL prediction 

Comparing the two figures shows that the exponential model holds more uncertainty than the 

quadratic comparison for this simulation. Since the simulated data is based off of a quadratic 

model with Gaussian noise it makes sense that the exponential model will contain more 

uncertainty in its prediction than a quadratic model would. 
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3. Task 2: Lifecycle Prognostics 
Each prognostic type uses different information and requires different algorithms and models. 

The data, and thus type, can be categorized chronologically to the component's life. Prior to 

operations the most only data available about a system would be how previous systems have 

acted under similar conditions, this would be labeled Type I information. Type II information 

incorporates the known and expected operational and /or environmental stressors associated with 

the system. The final class of information, Type III, is derived from directly observed signals and 

sensors attached to the system. This task seeks to establish a unified, meaningful, and logical 

progression through utilizing the various types of information as they become available within the 

operational lifetime of a system.  

 

 Error! Reference source not found.. Lifecycle Prognostics with Bayesian Transitions 

 

Population based (Type I) models would typically be used before the system operates and during 

the initial phases right after startup. Stressor based models (Type II) are most accurately 

employed starting after some expectations of the current and ongoing operational stresses of the 

system have been established, but also typically before any initial indications of a fault or any 

incipient degradation is detected. The final phase of modeling, a Type III online effects based 

model can be used to predict propagation of some negative health indicator after its existence has 

been established by some detection model.  Developing a method of transitioning between these 

model types in a manner that best preserves and incorporates information and knowledge gained 
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from previous stages of the lifetime modeling maximizes the use and presentation of relevant 

information about a system. This aids in providing the most accurate and robust indication of a 

system’s reliability or expected RUL at any point in the system’s operational lifetime. The goal of 

this task is to develop such a transitioning method. 

As is indicated in Figure 3.1-1, one approach investigated is to apply forms of Bayesian 

transitions between the primary types of information and models. These methods combine 

previous estimates of a parameter (priors) with sampling data to produce a posterior estimate that 

combines both sources of data, while reducing uncertainty. Within the context of Lifecycle 

Prognostics,  Bayesian transitioning methods can be applied to bridge between prognostics model 

and information types.  

Additional methods beyond Bayesian Transitions have also been explored during this 

investigation to come up with consistent RUL estimates when employing the GPM. These 

typically have involved weighted incorporations of the Type I and Type III estimates. As the 

component moves forward in time, the weights shift from favoring Type I to favoring Type III 

predictions. These investigations are discussed in the following section and lead to the 

development of an regimented method for incorporating information and transitioning between 

the types of prognostic models. 

3.1 Bayesian and Classical Statistics 

The classical form of Bayesian statistics is based primarily on Bayes' formula (Ghosh 2006).  

                          Equation 3-1  

                         Equation 3‐1 calculates the conditional probability density function (PDF) of θ, 

the parameters of interest, given new data x. The prior density function, π(θ), is a prior belief or 

estimate, with some characteristic distribution about the parameters. The f(x|θ) is the density of x, 

the data, interpreted as the conditional density of x given θ. The numerator is the joint density of 

θ and x, while the denominator is the marginal density of x, or prior predictive distribution. It is 

considered prior because it does not depend on the data x, and predictive because it describes a 

quantity that is observable. If the parameter of interest is discrete, then the integral is replaced 

with a summation. Both the sum and integral are integrated over all possible values of θ.                          

Equation 3‐1, when solved, gives the posterior density, a quantification of uncertainty about θ in 
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light of new data x. The transition from π(θ) to π(θ|x) is what is learned from the data, changing 

the mean estimate and uncertainty.  

3.1.1 Gaussian Conjugate Distributions  

Computationally, the posterior calculation of                          Equation  3‐1 could be 

mathematically difficult for every situation. However there exists prior and posterior distributions 

of the same family, jointly called conjugate distributions, which simplify Bayesian calculations 

greatly. The Gaussian conjugate distribution not only has Gaussian prior and posterior 

distributions, but also a Gaussian data sample. First the Gaussian prior distribution is defined as  

                             Equation 3-2 

Let X1, X2…Xn be independently and identically distributed (i.i.d.) sampling data ~ N(μ, σ2). 

        Equation 3-3 

These equations are combined with                          Equation 3‐1 to yield 

                                    Equation 3-4 

                                                          Equation 3-5 

                                   Equation  3‐4 gives the expected, or most likely, estimate of the mean of the 

distribution, while                                                          Equation 3‐5 gives the variance of the 

mean. It is important to distinguish between variance of the distribution, and variance of the 

mean. This variance is a measure of certainty of the expected mean estimate. The smaller the 

variance, the more precise the estimate is.   

The prior variance τ2 measures the strength of the belief in the uncertainty of the prior 

distribution. In this sense 1/τ2 is the precision of the prior, while n/σ2 is the precision of n data 

points (Welch 1939). This means that the posterior mean is the weighted average of the prior and 
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sample means with the precisions of each as weights. It also means that with more data, the prior 

data is weighted less and eventually the most likely estimate approaches the posterior.   

3.1.2  Weibull Sampling Distribution  

Another useful pair of conjugates is the inverse gamma, which is used when the sampling data 

most closely fits a Weibull distribution, assuming a known shape parameter β. In this case the 

prior inverse gamma parameters are defined as "a" and "b". If n numbers of i.i.d. sample points X 

fit a Weibull, the posterior is given by                          Equation 3‐6.  

                          Equation 3-6 

Several more conjugate pairs can easily be referenced.   

3.1.3 OLS Regression 

Using ordinary least squares (OLS) regression, a linear model can be defined by the general form,                            

Equation 3-7, where Y is the response, X is the input matrix, β is the vector of parameters, and 

σ2I represents independent observation errors with equal variance.  OLS assumes that the errors 

are normally distributed around a zero mean. The solution to the parameters can be found by 

solving the least squares solution,                        Equation 3-8. The columns of X are the 

independent parameter measurements and X includes a column of ones to allow for a non-zero 

intercept.  

                           Equation 3-7 

                        Equation 3-8 

3.1.4 Linear Regression with Bayesian Priors  

As linear regression is one of the most widely used statistical tools, it makes sense to apply 

Bayesian analysis to develop more sophisticated models. For the Bayesian OLS model in this 

report, because the noise variance of Y, σ2, is known, the conditional posterior distribution of β 

given σ2 is Gaussian (Gelman 2004), for which the conjugate prior distribution also takes on a 

Gaussian form. The conditional posterior distribution for the parameters is then                        

Equation 3-8, combined with                           Equation 3-9 and                              Equation 

3-10. 

                          Equation 3-9 
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                              Equation 3-10 

Before the Bayes prior information is incorporated, a data covariance matrix Σ is introduced. 

Instead of assuming equally distributed errors, σ2I, the covariance matrix is an n x n symmetric 

positive matrix, containing the variance at each point.                        Equation 3-8 and                              

Equation 3-10 are then replaced by                          Equation 3-11 and                                

Equation 3-12.  

                         Equation 3-11 

                                  Equation 3-12 

To include Bayesian updating, the prior distribution ~N(b0,Σb) is treated as one additional data 

point to the OLS input matrix. To achieve this, each variable is appended with the prior 

distribution data,     Equation 3-13. The X is appended with an identity matrix, with ones 

representing the parameters for which prior distributions exist.  

    Equation 3-13 

Two pieces of information, the prior and the data, are used to form an estimate which is the 

posterior.  The weightings of these two pieces of information are dependent on the variance of the 

prior, the variance (uncertainty) of the data, and the amount of the measured data (number of 

samples). If the variance of the prior is small compared to the uncertainty of the data, the prior b0 

will be weighed more heavily. However, as more data is collected, the data instead of the prior 

will be weighted more heavily in calculating the posterior. 

3.1.5 Local Linear Regression and Locally Weighted Regression 

The OLS model is sometimes referred to as "global" when in contrast to Local Linear Regression 

(LLR) and Locally Weighted Regression (LWR). As implied by the names, both LLR and LWR 

are used to correlate portions, or windows, of data as opposed to the entire dataset. For example, 

if the window size (bandwidth) were 10, the LLR and LWR would take in 10 data points and 

form a regression model. For LLR the standard OLS model,                            Equation  3‐7 

through     Equation 3‐13, apply.  
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For the LWR model, the dataset is weighted based on the proximity to some arbitrary point in the 

dataset. Though there are many different kinds of LWR models, this investigation focuses on the 

one-sided Gaussian kernel: 

              Equation 3-14 

where Xj0 is the center of the kernel, Xj is the vector of dependent variables including Xj0, and bw 

is the bandwidth, to yield for each data point the weight wj. When applied the center of the kernel 

is given the maximum normalized weighting of 1, with further points receiving diminishing 

values. The bandwidth determines the rate of decreasing weights. When applying local models, 

the bandwidth is an important parameter to establish. There is a tradeoff between weighting the 

ending trends of the data with the uncertainty of the model due to noise.  

3.2 Transitions between Prognostics Types 

When using Bayesian transitioning methods there are some assumptions that should be 

considered. Fundamentally, Bayesian analysis updates a prior belief with new data to get a 

posterior belief. The general approach to applying a Bayesian method consists of identifying the 

prior, which comes from the previous prognostics model type. Then observational data is sampled 

from the newer prognostics type. They are then combined using either the posterior expectation 

estimates, or linear regression that includes prior information. For most prognostics types 

involving distributions, the former is used; for anything involving GPM, the latter. 

Generally, when solving the posterior estimates, conjugate priors are used to find easy solutions 

to Bayes' formula based on the distribution of the sampled data. If the prior is not in a conjugate 

form, it can be parameterized to fit the appropriate conjugate. In essence, this is to assume that the 

prior can be accurately approximated with the distribution of choice.  

The advantages of Bayesian inference are most clearly seen when the uncertainty of sampling 

data is large compared to the strength of confidence in the prior belief. This also holds true when 

there is little sampling data available. Eventually in all cases the sampling data should overcome 

the prior belief. If successfully implemented, the Bayesian transitions should decrease the overall 

uncertainty, while preserving prior information.  

3.2.1 Type I to Type II Transition 

For this transition, Bayes formula can be applied using conjugate distributions,                                

Equation 3-4 and                                                          Equation 3-5. This is a widely practiced 
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form of Bayes formula, and is characterized by relatively straightforward equations that are easily 

referenced. For example, the Gaussian conjugate distribution not only has Gaussian prior and 

posterior distributions, but also a normally distributed data sample.  

Type I RUL estimate distribution can be considered as the prior with the Type II estimate as the 

sampled data. Considering the fact that most Type I models use a Weibull distribution, a Weibull 

with known shape parameter with an inverse gamma prior can be used instead. There are also 

equations that re-parameterize the Weibull parameters, transforming them into the mean and 

variance parameters of the Gaussian. This re-parameterization can retain much of the original 

distribution, especially if the distribution is similar to a Gaussian in the first place.  

3.2.2 Type I/II to Type III Transition 

Bayesian priors can also be incorporated into the OLS model to reduce the uncertainty and 

increase the stability of RUL estimates. Bayesian statistics combines prior distributions with 

sampling data to create a posterior distribution. When few data points are available, the model 

can be easily thrown off and result in wildly varying time of failures. When applied to OLS, the 

prior parameters from all the failed cases form the prior distribution. The sampled data comes 

from the censored data.  

Mathematically, the transition is achieved by treating a prior RUL distribution as an additional 

data point.  

 , ,       Equation 3-15 

For example, if a Type I RUL distribution exists, then y is appended with the degradation 

threshold and X with the mean time to failure based on Type I analysis. The diagonal matrix is 

appended with a measure of the RUL uncertainty distribution. For both cases, the weight of the 

prior then depends on two main factors: the variance of the prior against the variance of the data, 

and the number of samples taken in. If the variance of the prior is small against the noise of the 

data, the prior b0 will be weighed more heavily.   

3.2.3 Alternatives to GPM via Local Models 

As stated in the previous section, one problem in applying the GPM to a failure case is having 

limited or no previous knowledge of the functional fit of the paths taken by the specific failure 

mode. For instance, flank wear in cutting tools show an initial steep rise which tapers off to 

follow a linear correlation between wear and cutting time (Huang 2004). A square root or linear 
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fit could possibly be applied to great accuracy initially, however, flank wear increases rapidly 

after passing through the linear region. This means that a square root or linear extrapolation 

would not be accurately correlated with the future data. For a previously unseen failure mode, 

such empirical observations of future events would not exist.  

Local models can be used to put emphasis on the last known data to try to accurately represent 

future parameters. This approach, such as the "LEAP-frog" technique (Greitzer, 1999/2001), has 

been shown to hold some promise in estimating future parameters. However, while the LEAP-

frog technique applies local models with extra data from linear independent variables (such as 

time) and non-linear independent variables (distance driven by tanks), this research combines the 

local models with other forms of prognostic analysis.  

For the PHM data in the previous sections, four additional prediction methods were applied. Two 

of these methods are the LLR and LWR models explained in section 3.1.5 and the remaining two 

are those models combined with Bayesian methods similar to method (3). For the Bayes LLR the 

process is almost identical to method (3) taking into account regression of only the window.  

For the Bayes LWR the two weighting functions stemming from the Bayes uncertainty to signal 

noise ratio and the Gaussian one-sided kernel can be multiplied to form a single variance-

covariance matrix Σ. For the Bayes prior "data point" the kernel weighting is given a 1, though 

this does not have to be the case. It makes sense to give the prior point the standard weighting 

based on uncertainty as the point does not technically exist as part of the dataset. For the actual 

data points, because the noise variance is constant, the overall weighting relative to each other is 

based solely on the kernel weighting. Thus with respect to the current time, Xj0, the data set is 

weighted based on the kernel, and the Bayes prior data point is weighted based on the 

uncertainties of the models.  

Because the data sets are noisy, and many test cases were analyzed, each local model was applied 

over a range of bandwidths. It is expected that there is a tradeoff between following the ending 

trends of the data and the uncertainty. For a range of bandwidths from 3 to 50, the lowest average 

percent errors over all cases were given by bandwidths 3, 4, 6, 8, and 17. While some statistical 

analysis may be applied to calculate bandwidth in a general or specific case, such analysis is 

outside the scope of this investigation and will not be considered. Instead, using those five 

bandwidths, understanding the statistical nature of the problem and that low average percent 

errors are generally free of outliers which would explode the error values, Figure 3.2-1 compares 

the different prediction methods: (5) LLR, (6) LLR with Bayes, (7) LWR, (8) LWR with Bayes.  
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Figure 3.2-1 Comparison of Local Models for Predicting RULs for Varying Bandwidths 

It can be seen that, on average, the Bayesian counterparts perform better than the classical local 

regression models. The LLR seemed to outperform the LWR models. This may be due to heavy 

biasing of each individual data point at the end in the LWR, especially for the smaller 

bandwidths, while the LLR balances the noise uncertainty with the need to match ending trends. 

On average all these models performed less accurately compared to the global GPM. While, for 

the GPM it was generally known to have a quadratic fit, these local models assume the functional 

fit is not known. Because the paths are in fact quadratic, there will always be errors when trying 

to fit linear curves to the data. The more non-linear the data, the poorer the local models should 

perform, and the more emphasis must be put on the ending data points.  

3.2.4 Alternative Methods Conclusions 

For this task, two general methods were applied. The first involved a simple Bayesian 

combination of different RUL distributions. This applies to very general cases in which RUL 

distributions can be combined to form estimates containing more data.  

For the second general method, GPM, 8 different RUL prediction methods were compared on 

prognostic parameter data. Half were conventional regression methods, (1), (2), (5), (7), while the 
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other half were original methods involving Bayesian analysis under restrictions of data 

availability. Method (3) involved the GPM with known functional form and using Type I, or any 

previous RUL distribution data, as an additional data point in the regression. In method (4) a 

linear model was applied, to yield a closed-form solution, and the RUL distribution was re-

parameterized into regression coefficients. In methods (6) and (8) the same previous RUL 

distribution was used as an additional data point in regression, and outperformed their non-

Bayesian counterparts. The larger errors were due to applying a linear model to a non-linear path, 

and the fluctuations caused by signal noise.  
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4. Task 3: Performance Metrics 
Performance metrics are methods used to judge how well algorithms work towards some general 

goal. In terms of prognostics, performance metrics are used to indicate how accurate or robust a 

particular model is in relative terms of predicting the RUL of a system. The goal of these metrics 

is to provide some baseline indicator of how well a model performs in either relative or absolute 

terms such that different models can be quickly compared. Metrics can also be useful indicators 

of confidence in the output or performance of a model. Without some indication of the overall 

performance of a model, it is difficult to have confidence in the results. The following section 

provides a theoretical and practical presentation of selected performance metrics found in the 

literature as well as some developed within the framework of this research. As shown in this 

section, for a metric to be useful it must be independent of the model under evaluation and 

provide an intuitive indication of performance when compared to similar modeling efforts and 

preferably be ranked on some absolute scale for self-evaluation.  

4.1  Performance Metric Demonstration 

To apply the metrics we must have data and RUL estimation algorithms. The data that will be 

applied is shown in Figure 4.1-1, and the RUL algorithms used are Bayesian Linear Regression 

and Ordinary Least Squares. The RUL algorithm estimates and uncertainties are shown in the 

right side of Figure 4.1-1; they are RUL estimates of the data. Explanations for the algorithms are 

available in preceding sections. 

 

Figure 4.1-1 Data and RUL Predictions and Associating Uncertainties 

It is important to note that the methods described are applied off-line and allow for the 

comparison of various prognostic methods. Application of these metrics requires knowledge of 
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the true time to failure of the system. These metrics have been coded in MATLAB and are 

applied to simulated models. In this first part of this section, examples are limited to the linear 

model in Figure 4.1-1. Simpler metrics, such as Mean Squared Error (MSE), are not addressed 

since these performance metrics are only related to prognostic methods. 

4.1.1 Mean Absolute Percent Error 

The first performance metric to be discussed is commonly used and known as the Mean Absolute 

Percentage Error (MAPE). MAPE is a measure of accuracy through error and is described in                    

Equation 4-1 [Sexena and Saha, 2009]. 

                   Equation 4-1 

In                    Equation 4-1 Δ(i) is error, R*(i) is the true RUL value at time (i), and l is the range 

of time that is the difference between the start and end of the RUL prediction. MAPE averages 

the total absolute percentage error. This metric can be used best under situations where the RUL 

has a PDF or if there are multiple units under test.  Sample estimates for MAPE are available on 

Table 4-1.   

Table 4-1 MAPE Values 

Bayes OLS 

14.90 14.90 

 

In this first table based on Figure 4.1-1, the two prediction estimates are very similar to each other 

so the MAPE value for each is the same. If the two values were different, the lower value would 

be more desirable as that would imply a lower overall error.  

4.1.2 α-λ Performance 

The performance metric described simply as α-λ is a method that can be used to determine the 

quality of a RUL prediction. The α-λ metric measures if a prediction falls within a pre-specified 

tolerance range of accuracy at time interval λ. This process is defined by: 

                Equation 4-2 

In                 Equation 4-2, α is the pre specified performance value, for example α=0.2 would 

imply a 20% accuracy. R*(t) is the actual RUL and Rl is the predicted RUL.  With this metric, λ 
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must also be defined as it rescales the time frame, setting the start of the prediction at 0 and the 

true time of failure at 1. The following equation defines λ. 

                    Equation 4-3 

In                     Equation 4-3 tP is the time at the start of the prediction, tEOL is the time at the end 

of life, and tλ is the time at the specified value. The figure below shows three different RUL 

predictions. The shaded blue area is the specified accuracy zone, α=0.2, in this example. 

 

Figure 4.1-2  α-λ Comparison 

One item to note in Figure 4.1-2 is that both the Bayesian Estimate and the OLS estimate leave 

the confidence area (accuracy zone) at a few points. The OLS estimate leaves the blue area first. 

Both estimates end noticeably outside the confidence region ending about 0.1 before the true time 

to failure. The advantage of this estimate is how easily it allows the user to compare different 

RUL estimates and how the progression of the accuracy of the estimate changes over the life of 

the component. 

4.1.3 Prognostic Horizon 

The concept of Prognostic Horizon (PH), detailed in Saxena and Saha 2009, is the difference 

between the time when the prediction starts and ends, given that certain conditions are met. The 

condition in this case is that the prediction lies within acceptable confidence bounds α as seen in 

Figure 4.1-2 from the previous section. In other words, the Prognostic Horizon calculates the 
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difference between the times the RUL prediction first enters the allowable error margin to the 

time a failure is predicted.                   Equation 4-4 defines the Prognostic Horizon. EOP stands 

for End of Prediction, and “i" refers to the time the prediction enters the confidence region. 

                  Equation 4-4 

The purpose of the Prognostic Horizon is to determine that the prediction is within allowable 

limits and that the prediction is reliable. The PH can also help distinguish which RUL algorithm 

is more desirable. The logic is that the larger a PH value is, the more time the prediction has to 

converge on its answer. Table 4-2 compares Prognostic Horizon values Between Bayesian Linear 

Regression and Ordinary Least Squares. 

Table 4-2 Prognostic Horizon Values 

Bayes OLS 

8.449 8.449 

 

In Table 4.2 the two PH values are exactly the same. This will not always be the case, but for the 

data observed in Figure 4.1 the values are the same. Notice how the OLS prediction initially starts 

inside the limits but does not stay in. There is debate concerning whether these situations need to 

be considered when calculating PH. The most important aspect of this metric is that it informs the 

user of which algorithm has the most time to develop an estimate. 

4.1.4 Relative Accuracy (RA) and Cumulative RA (CRA) 

Relative Accuracy (RA) and Cumulative Relative Accuracy (CRA) are two concepts similar to 

the α-λ concept.  Relative Accuracy is a metric that determines the accuracy level at time instant 

λ.          Equation 4-5 defines RA. 

         Equation 4-5 

The same terms that apply in α-λ apply in RA. High accuracy values are desirable with this 

metric. Values produced are between 0 and 1 with values closer to one being more accurate and 

lower values being less accurate. Figure 4.1-3 shows a graph of RA estimates as time progresses 

for two RUL estimate types.  The graph shows that early on the Bayesian estimate was more 

accurate but eventually lost its advantage. The sharp drop in accuracy is telltale of how well the 
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estimates match the true value at end of life. RA approaches zero near the end of life because the 

prediction under predicts the actual value.  
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Figure 4.1-3 RA Values from Start of Prediction to End 

Cumulative Relative Accuracy is described in Saxena and Saha 2009 as a “normalized weighted 

sum of relative prediction accuracies at specific time instances.” In other words, CRA is the 

weighted sum of RA values calculated at differing time instances. The formula for CRA is shown 

in                   Equation 4-6. 

                  Equation 4-6 

In                   Equation 4-6, RAλ is the Relative Accuracy and w is a series of weights. When 

setting the weights, values further away from the TTF are considered less important than values 

closer to the end of life. So it is recommended to weight values closer to the end of life prediction 

higher than values at the beginning of life. The end results are a single value that is representative 

of the overall accuracy of the RUL estimate. Practical examples are shown in Table 4-3. The RA 

values are taken at the halfway point (λ=0.5) between the start of the prediction and the end of 

life. 

Table 4-3 RA and CRA 

Method RA(λ=0.5) CRA 
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OLS 0.6771 0.213 

Bayes 0.6771 0.2155 

According to the CRA metric, the OLS method provides a better overall accuracy than the 

Bayesian method. The cause of this can be seen in α-λ performance. In the figure mentioned, the 

Bayesian Estimate is generally more accurate early on in life, occasionally dipping below until 

the two algorithms seem to mirror each other. This mirroring breaks at the end before a failure is 

predicted. Remember that end of life accuracy values are weighted more heavily than early life 

values. While the Bayesian method was more accurate than the OLS method earlier in life, those 

values were weighted less heavily than the later in life accuracy values where the OLS method 

was better. Because of this the OLS method can be considered more accurate. 

4.1.5 Convergence 

Convergence generally refers to an estimate’s ability to approach an answer. Convergence in the 

sense presented here, is a performance metric that quantifies how other performance metrics, 

precision or accuracy based, improve with time. Lower scores mean faster convergence. A 

weakness of this convergence method is that, when comparing algorithms that start at different 

times, have differing Prognostic Horizons can skew results. For example, an algorithm that starts 

later than another and reaches the same estimate could have a lower convergence value, but it 

does not mean the shorter estimate converged faster.  With this method, according to Saxena and 

Saha, algorithms that start predicting early may seem to have slower convergence then algorithms 

that start later. The equation that defines convergence is given in                Equation 4-7. 

               Equation 4-7  

In                Equation 4-7, Cm is the convergence value and M(i) is the performance metric value 

being evaluated. In this (xc, yc) is the center of mass of the area under the curve, this makes Cm 

the Euclidean distance between (tP,0) and (xc, yc) . To summarize these results, the smaller the 

Euclidean distance is the faster the convergence of the estimate. 

In the following applied example, the performance metric Relative Accuracy is being analyzed 

for convergence. Table 4-4 shows the convergence values for the two methods. 

Table 4-4 Convergence Values 

Bayes OLS 
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1.9496 1.9725 

 

Figure 4.1-4 shows the location of the center of mass for the Bayesian and OLS Relative 

Accuracy estimates, labeled as CmBayes and CMOLS. Since the Bayesian distance Cm is smaller, 

the algorithm converges faster making this method arguably better in one area than the OLS 

method. This result contrasts the findings of the CRA values found in the previous section.  
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Figure 4.1-4 Centric Values of Performance Metric RA 

4.1.6 Uncertainty Spread 

Uncertainty spread is a concept similar to that of α-λ.  Figure 4.1-5 shows a comparison of the 

uncertainty spread over time. This graph shows how uncertainty of the predicted estimates 

changes over time. Initially the Bayesian method is more precise in terms of uncertainty spread. 

Eventually though, the RUL uncertainty spread evens out as they approach the end of life. The 

OLS estimate occasionally dips lower than the Bayesian estimate near the end of the prediction, 

but it always returns to the same value as the Bayesian. This graph can help determine which 

method has more or less uncertainty.  
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Figure 4.1-5 Spread Over Time 

4.1.7 Remarks on Metrics 

Setting aside the need for useful and informative performance metrics, there are a variety of real 

world factors and limitations that need to be considered. Foremost is computational speed. Ideally 

the software that runs the performance metrics can do so in a timely manner and can keep up with 

on-line monitoring when these methods are developed. Economic factors of a prognostics 

operation must also be considered. Ideally the effort to start up and develop prognostics must 

prove profitable in the short or long term to justify expenditures. Some factors that need to be 

considered from an economic standpoint are the amount of time required to mitigate or correct a 

problem detected, the cost of taking such measures, and the cost of failure. 

It is not appropriate or necessary to apply all of the performance metrics at once to analyze a 

model.  A systematic approach to analyzing a model must be used and using a specific metric 

must be influenced by a desired goal. For example, using MAPE and Relative Accuracy to judge 

a models performance is more redundant than useful.  

4.2 Performance Metrics Methodology 

A variety of performance metrics were described and detailed using a single example for 

demonstration. Work in this section will outline and examine the algorithm performance metrics. 

The algorithm performance metrics consist of four parts: Accuracy, Robustness, Precision, and 

Convergence. To quickly define each, Accuracy is a measure of error in an algorithm, Robustness 

is a measure of algorithms resilience to noise or outliers, Precision is a metric that analyzes how 

close the estimate is to the correct answer, and Convergence is a measure of the rate at which an 
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estimate improves with time. To develop a proper algorithm performance methodology, the 

various techniques must be tested and compared. 

4.2.1 Performance Metric Hierarchy 

To be effective the performance metrics are not to be applied on a case by case basis but by a 

universally defined method. Doing so creates a consistent standard for which algorithm 

performance can be judged by.  Figure 4.2-1 shows a four-step process for applying performance 

metrics. The four metrics to be used in order are Prognostic Horizon, α-λ, MAPE, and 

Convergence.  Each metric has a specific purpose. The PH metric produces the time at which an 

algorithm can yield a result. This is useful when comparing different algorithms, as more time to 

use data to produce an estimate is preferable. Also, any algorithm used must pass this test to be 

considered relevant. A negative PH value shows that a prediction starts after the fault occurs, 

demonstrating that the prediction method is not useful. The α-λ metric is the next estimate test 

that shows how well the prediction stays within specified confidence bounds. Next the MAPE test 

serves the purpose of determining how well the algorithm performs quantitatively. Finally the 

convergence test measures how fast an algorithm converges on its answer. Convergence is the 

final test because the algorithms predictions must be proven worthy first to understand what the 

convergence metric means. Bad predictions can converge much faster than good predictions; 

therefore the quality of the prediction must be ascertained first. 
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Figure 4.2-1 Performance Metric Hierarchy 

This flow chart differs slightly from the hierarchy in the literature. The difference is that the 

MAPE performance metric is replaced with the Relative Accuracy and Cumulative Relative 

Accuracy metrics. The main difference between MAPE and RA and CRA is in usability. RA and 

CRA require user input in selecting the points to compare and in the weighting. 

4.2.2 Performance Metric Evaluation 

Of the performance metrics demonstrated six will be tested and compared. The five performance 

metrics are MAPE, Prognostic Horizon, α-λ, Relative Accuracy, Cumulative Relative Accuracy. 

The metrics being tested are either commonly used or presented in the literature.  

To evaluate the performance metrics, simulated data will be produced to create RUL estimates 

that will be judged by each of the performance metrics. There are three models: linear, quadratic, 

and exponential. Regression analysis will be used to produce RUL estimates. Each model will 

have a linear, quadratic, and exponential regression fit applied to it. The purpose of this is to test 

how the performance metrics handle correct algorithm fits and incorrect algorithm fits. Each 

model will have one correct fit and two incorrect fits. Ideally, a quadratic model would show that 

a quadratic algorithm produces the best estimate. The three models are shown in Figure 4.2-2. 

The linear model has the parameters β1=N(1, 0.022) and β0=N(0.3, 0.082). The quadratic and 
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exponential models have the parameters β2=N(1.1, 0.12), β1=N(1, 0.022),  β0=N(0.3, 0.082). Each 

model has a normally distributed noise with the parameters ε=N(0,0.32). 
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Figure 4.2-2 Linear, Quadratic, Exponential Model 

Each model has a separately defined confidence interval.  The linear model is set at 10, the 

quadratic at 40 and the exponential at 1000. The first performance metric to be tested is the α-λ 

metric. With α value set at 20%, Figure 4.2-3 shows how the estimates perform over time. The 

three figures in Figure 4.2-3 shows the three estimates, linear, quadratic, exponential, for each of 

the three models, linear, quadratic, and exponential. In the figure the best fits are shown to be 

estimates that appear most in the confidence region. According to the three figures the linear 

model was estimated best with a linear algorithm. The quadratic and exponential estimations were 

lower than the true value and outside the confidence region. For the quadratic model the linear 

algorithm generally estimated too high, being far above the true RUL and confidence region. In 

this case the exponential model proved to be partially reliable as the estimates mostly fell within 

the confidence region. The quadratic algorithm though, proved to be the best fit as the estimates 

never left the confidence region. For the exponential model, the exponential algorithm was the 

only acceptable fit. Both the quadratic and linear model estimates were too high. 
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Figure 4.2-3 α-λ; Linear (Top Left), Quadratic (Top Right), Exponential (Bottom) 

The rest of the performance metrics are covered in Table 4-5, Table 4-6, and Table 4-7. To 

quickly breakdown how to read the metrics: with Prognostic Horizon (PH) larger values are 

better, for Relative Accuracy (RA) and Cumulative Relative Accuracy (CRA) values closest to 1 

are best, for Mean Absolute Percent Error (MAPE) lower values are better, and for convergence 

lower values are best. 

Table 4-5 Performance Metric Comparisons: Linear Model 

Regression Fit Linear Quadratic Exponential

PH 7.4694 0.6122 -0.1224 

RA (λ=.5) 0.9829 0.4229 0.309 

CRA 0.249 0.129 0.0279 

MAPE 0.2278 0.5702 0.9008 

Convergence 3.2644 2.8967 2.6884 
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Table 4-6 Performance Metric Comparisons: Quadratic Model 

Regression Fit Linear Quadratic Exponential

PH -0.1224 4.5306 4.0408 

RA (λ=.5) -0.5517 0.9957 0.4885 

CRA -0.8215 0.5077 0.4215 

MAPE 2.1569 0.0458 0.1595 

Convergence 5.1818 2.6305 2.7466 

    

Table 4-7 Performance Metric Comparisons: Exponential Model 

Regression Fit Linear Quadratic Exponential

PH -0.1224 5.7551 5.7551 

RA (λ=.5) -23.623 -2.7445 0.92 

CRA -19.769 -1.2371 0.4114 

MAPE 36.7604 3.8102 0.2006 

Convergence 31.7781 9.898 3.1382 

 

Each performance metric compared shows that the proper fit generally performs best out of the 

three fits. The linear simulated data, for example, shows that the linear model has the largest 

Prognostic Horizon; the best Relative Accuracy at 50% of the components life, the best 

Cumulative Relative Accuracy, the best MAPE value, but the worst convergence. The 

convergence metric though is not indicative of a negative overall performance of the linear model 

when compared to the others. Using this metric in conjunction with the α-λ shows the linear 

algorithm is the only appropriate algorithm to fit the model and has the only convergence metric 

that matters. 

The quadratic model is unique as it shows that both the exponential and quadratic fits are 

appropriate. This demonstrates the effectiveness of the techniques as the quadratic prediction is 

shown to be the better algorithm than the exponential prediction with every metric comparison.  

Applying the metric hierarchy to the linear model showcases its usefulness. Starting with the PH 

value, the linear prediction is the largest (PH=7.4), followed by quadratic (PH=0.6) and the 

exponential prediction does not pass this test (PH=-0.1). Looking at the α-λ graph for linear 
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predictions only the linear model is adequately within the confidence region. The quadratic 

prediction does not pass the confidence test. This point is further illustrated by the MAPE metric, 

which shows that the linear prediction is the most accurate. The convergence metric shows that 

the quadratic and exponential algorithms converge faster than the linear prediction but because 

they do not pass the other tests only the linear algorithm should be considered.  

4.2.3 Remarks 

The performance metric hierarchy presented in Saxena and Saha, 2009 differs slightly than the 

process defined in Figure 4.2-1. The change is the reliance on MAPE instead of RA and CRA to 

determine accuracy values. The current metric hierarchy was chosen for ease of use as the RA 

methods can involve case-by-case user input. 

In testing the methodology, it is shown that the performance metrics can be used to quantify 

remaining useful life prediction performance. None of the metrics gave contradictory results for 

improper fits. Close fits, such as quadratic and exponential, were also able to be analyzed 

allowing for quantitative comparison of effectiveness. 
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5. Task 4: Integrate PEP with Bayesian Transitioning 
Previously developed at the University of Tennessee, the Process and Equipment Prognostic 

(PEP) toolbox contained tools for rapid creation and implementation of various standard 

prognostic models. These models utilized the full set of data available within the lifetime of a 

system, but treated each of the models as disparate entities without any predefined methods for 

integrating and merging the information of different types of models. As shown in previous 

sections, this is not the best method in regards to the full utilization of available knowledge of a 

system. In order to update the PEP toolbox and have it reflect the most up to date algorithms and 

advances in progressive prognostic lifetime information utilization Bayesian Transitioning has 

successfully been integrated into the PEP toolbox. This task was divided into two parts. First, the 

existing PEP functions were enhanced to ease the addition of the new function. Next, the 

functions were adapted to accept the standard PEP outputs, and accept new optional inputs for the 

Bayes transition.  

5.1 Modifications to PEP 

Work to integrate prognostic methods for different prognostic model types into the PEP toolbox 

and apply Lifecycle Prognostics algorithms with the Bayesian Transitions has progressed in Task 

2. A few additional functions have been added to the toolbox and several existing functions have 

been modified in anticipation of future functions: 

 initBayes and fitGPM, both modified to have more flexible inputs.  

 runGPM, the uncertainty calculation was updated, and uncertainty output format changed 

 runTypeI, one more optional input for reliability percentile was added, equations 

modified to analytical solutions, instead of numerical approximation 

 runprog, runTypeI, runPHM, runMC, and runGPM, all modified to provide give 

standardized outputs, of both standard deviation, and 95% confidence interval 

5.2 Bayes Transitions Functionality 

Before the Bayesian transitions could be applied, much of the existing code was modified. In 

most instances, the outputs of the run functions were standardized to give RUL predictions, 

standard deviation of the prediction, and the 95% confidence interval in one structure variable as 

opposed to separate variables. This involved not only changing but also adding to the 

mathematical models. In a lot of cases, calculations for the standard deviation were added.  
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The standard deviations were added to make the Bayesian transitions easier, as well as give 

another method of uncertainty analysis.  All Bayesian transitions require a measure of 

uncertainty. Since the existing run functions do most of the calculations required finding the 

uncertainty, this was found to be the most efficient method, while also improving the 

functionality of PEP.  

When designing this approach, several factors were taken into consideration. The transitions 

should naturally fit the current paradigm set by the existing PEP, following the standard use of 

PEP. Specifically it should naturally take in the models generated by PEP, and accept new data 

similarly to how the current functions accept data. The user-interface should also be intuitive. The 

first attempt at creating the Bayesian transitions involved writing a separate function that could 

take in any two models generated by PEP. The function would analyze which models types were 

input, and would accordingly apply the correct transition algorithm. However, it became apparent 

in certain cases, such as when applying the MCMC model, that there may be need for information 

not stored in the models. This approach posed two problems: the need to add additional 

information makes the inputs for this function not standard and certain calculations would've been 

repeated in running both models and the transition algorithm. This violates user-interface 

simplicity and is computationally inefficient.  

5.2.1 Type I to Type II in PEP 

The Bayesian transitions were successfully implemented using a modified approach. Instead of 

separate functions, existing run functions were modified to optionally take in a model of lower 

type. For example, Type I was not modified in this way, as it is the basic prognostics model. 

However the MCMC PHM and GPM run functions could take in Type I models, while the GPM 

could also take in Type II models.   

These transitions could be demonstrated again by looking at the 2008 PHM challenge. A Type I 

model was built and used as the prior for the MCMC and GPM models. It should first be noted 

that applying MCMC might not be the best approach to this particular dataset. Because the data is 

unitless, and the background information is unknown, it is impossible to say which, if any, of the 

inputs would be a good covariate (a representation of the relative operation condition), as such a 

quantitative analysis of the error has no bearing. Additionally, quantitative analysis was carried 

out for the Type I to GPM transition presented in the PHM case study. However, the 

mathematical concepts of both transitions are plainly explained, and verified to yield reasonable 

results.  
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In this case, a Type I Gaussian model was initialized using the basic PEP function  

typeI = initTypeI(TOF,'distribution','normal') 

where TOF is a vector of the historical time of failures, and the distribution is set to normal, as 

the default is Weibull. A Weibull distribution could have also been used.  

A type II model is then built using the same steps outlined in PEP's previous version, centered on 

the two PEP functions: MCdata and initMC. Next, RUL estimates using a MCMC model with a 

Type I transition were made using the same runMC function, but with the additional type I model 

input.  

[new_oc map] = MCdata(old_oc); 
typeII = initMC(new_oc,'RULcon',0.5); 
typeIIout = runMC(typeII,test_oc,typeI); 

The old_oc is the covariates vector for each case. MCdata maps the covariates into distinct states, 

new_oc, which is used to build the MCMC model and predicts RUL at the 50th percentile of 

simulated failures. For comparison, the MCMC was also run without the transition as a control to 

see how much the Type I prior affected the RUL prediction. In addition to the standard RUL, std, 

and 95% confidence intervals, runMC returns the posterior variance if Type I is included as an 

input. The transition was a simple matter of applying the Gaussian conjugate pair       Equation 

3-3 and                                    Equation 3-4. The Type I provided the prior mean and variance, 

calculated at that time. In this case time equals number of data points, and weights the MCMC 

mean and standard deviation.  

5.2.2 Transitioning to GPM in PEP 

The syntax and approach is similar to that presented in the previous section, in that including the 

prior involves initializing PEP models. In addition, modifications were made to initGPM, 

fitGPM, threshGPM, and runGPM to both increase the flexibility of those basic functions, and 

allow for Bayesian updating when runGPM is called. Some modifications not directly related to 

the Bayes transitions are listed as follows: 

 Calculation and implementation of threshold 
 Additional functional fits (cubic and square root) 
 Analytical calculations of RUL based on functional fit 
 Options for dealing with negative RUL estimates 

 

Additional changes were made as a direct result of the Bayes transitions:  

 Posterior uncertainty calculations and outputs 
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 Priors used as part of the outputs 
 Acceptance and syntax of inputs 
 Bayesian incorporation of prior models 

 

Applying the Bayesian transitions to the GPM can occur after any applicable Type I or Type II 

PEP model is initialized. Multiple Type I and Type II models can also be incorporated. In the 

case of Type II models, additional information about each test case must be included as would be 

expected when running just the Type II. For instance, for a Type II proportional hazards model, it 

is expected that the operating condition of each test case is known. These operating conditions 

must follow immediately after the Type II model to which it refers. The following shows a 

version of proper syntax when incorporating both a Type I and Type II proportional hazards into 

a GPM.  

 typeIIIout = runGPM(typeIII, testPar, typeI, typeII, testCondition); 
 

Other variations may also be acceptable. As in all the previous cases, initProg and runProg may 

be used in place of all init- and run- functions, provided that the model type is correctly specified 

when initializing. In addition, the order in which the Type I and Type II priors are input does not 

matter as long as they are after the test parameters, and that the Type II information directly 

follows the Type II model.  

As a final note, these Bayesian transitions should not be confused with the already extant path 

priors. Though both methods are similar in philosophy and implementation, the path priors were 

already a feature of PEP and use the distributions of path coefficients as priors. These path priors 

can be used in conjunction with all Bayesian transition methods, and have the combined effect of 

placing increase importance on the priors, which tend towards "average" predictions.  
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6. Task 5: Integrate the PEP and PEM Toolboxes 
The Process Equipment Monitoring (PEM) toolbox for MATLAB, developed previously at the 

University of Tennessee, is a package set of tools ideal for building empirical models with the 

goal of system anomaly detection and quantification. These empirical models emulate a normal 

system and can be used to predict the expected system behavior for a given set of incoming 

system inputs and/or sensor indicators. Anomaly detection is largely based on the evaluation of 

residuals, or the differences between the actual signal and the model output. These residuals can 

be thought of as quantifications of how much the system deviates from normal behavior, and 

make ideal inputs for many of the modeling algorithms found in the Process and Equipment 

Prognostic (PEP) toolbox discussed in the previous section. Developed as separate entities, the 

integration of these two toolboxes is the logical and natural progression of each as they both are 

able to provide information necessary in obtaining insight into the RUL of a system. Shown 

below is a schematic representation of the integrated architecture of both the PEM and the PEP 

toolboxes. 

 

Figure 5.2-1 PEM & PEP Architecture 

 Those these toolboxes are inherently designed to provide progressive information from one to the 

other. In regards to the operational lifetime prognostic estimations of a system, the PEM is able to 

provide the driving indications of the essential Type III effects based models, including when to 

switch to such a model via fault alarm indicators as degradation increased. This task provides 

intuitive, user friendly integration of these toolboxes to aid in the rapid development and 

evaluation of complete reliability and prognostic models. 

6.1 Introduction 

The purpose of integrating the PEP and PEM toolboxes is to facilitate condition-monitoring tasks 

while also opening the way to prognostic analysis in a straightforward and intuitive way. There 

are many benefits to tying together condition monitoring with predictive models. One of the most 
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important benefits of merging the models together is the ease of data analysis. The ability of the 

models to predict RUL is directly dependent on the usefullness of the supplied data and any 

analyses performed. Typically, it is expected that useful information can be extracted from either 

the residuals or the expected outputs of a condition monitoring system, which can be for 

prognostic model development.  

The Process Equipment Monitoring and Prognostics (PEMP) Suite was developed to aid the user 

in condition monitoring and RUL estimation. It combines the functionality of both PEM and PEP 

while providing additional data extraction and interpretation tools. In the MATLAB command 

line, the PEM and PEP toolboxes can reasonably be applied on the same dataset. However, this is 

not a true conjoining of the two toolboxes. With additional linking functions as well as a GUI, not 

only is the user interaction more intuitive, there is less of a burden on the user to understand the 

entire process.   

6.2 The Process Equipment Monitoring and Prognostics Suite 

The PEMP Suite is both a scripting based function suite as well as a graphical user interface in 

MATLAB that allows the user to create empirical models for the purposes of monitoring and 

prognostics, given the proper data inputs. Using the "Monitoring" set of tools, the user can create 

different empirical models. Several models can be built and stored to provide easy comparison 

and can then be used for both fault detection and calculating residuals, which are the deviations 

between test signals and the model. In the "Prognostics" toolset, various empirical models can be 

built that are dependent on the type and availability of data. The models are used to calculate the 

RUL of a system.  

This new user interface was the product of merging the algorithms and functionality available in 

the PEM and the PEP MATLAB toolboxes. These toolboxes provide MATLAB functions to 

create empirical models, perform fault detection, and calculate RUL predictions. By creating the 

new interface, many new features were added which make the execution of the tools much more 

accessible to the user. The graphical capabilities of the interface facilitate automated processes 

that help the user interpret the modeling process. Relevant figures are automatically generated 

and the user can control the application of complex algorithms. The following details the major 

features of the PEMP Suite interface, with further examples and user guides attached to later 

sections of this document. This is not an exhaustive list of everything that can be accomplished 

with the PEMP suite but instead highlights the main and expected uses.  
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6.2.1 Cox Proportional Hazards and General Path Model Transitioning Using Bayes 

The PHM is a widely used method in not only equipment prognostics, but in any prognostic field. 

It is characterized by the use of covariates, values assigned to the system as a representation of 

the presence of conditional factors pertinent to prognostics. It uses the operating conditions of the 

system to create updated Remaining Useful Life (RUL) estimates based on statistical analysis and 

historical failure data.  

On the other hand, the GPM is a degradation-based prognostic technique. It combines signal 

abnormalities into a single prognostics parameter when a fault is present. This degradation 

parameter is extrapolated to a failure threshold using linear regression, a point at which the 

system is considered to fail.  

A method to combine and transition between the PHM and GPM would not only increase the 

stability of the RUL estimates of the GPM, but also preserve all prognostic information when 

multiple sources of failure data are available. Such a method is achieved using Bayesian Ordinary 

Least Squares (OLS) regression.  

Cox PHM: 

The Cox PHM is easily referenced, and briefly presented here so that the Bayes transition can be 

fully documented. It can be summarized by the following equation. 

                  Equation 6-1 

where H is the hazard rate dependent on time and covariate. The H0 is the baseline hazard rate, 

and β is a known parameter. The reliability is then given by  

                                       Equation 6-2 

with the conditional reliability 

                                  Equation 6-3 

This equation gives an RUL estimate based on the current time the system has survived.  

6.2.2 GPM 

Many methods exist for obtaining the prognostics parameter, referenced here as the generic Y. 

This usually involves tracking the residuals of the system, observed from initial fault to the end of 
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life failure. The residuals are the difference between the model and the observed values. The ones 

pertinent to prognostics can be combined into the single degradation parameter tracked over time. 

The point at which the system fails can be considered the failure threshold, and is the target for 

RUL estimations.  

The GPM extrapolates to the failure threshold using OLS regression. This takes the form 

                         Equation 6-4 

                                     Equation 6-5 

where it is assumed that the predictions of Y are normally distributed about Xβ and equal 

variance.  

6.2.3 OLS with Bayes 

The path parameters can also be assumed to have a normal distribution.  

                                 Equation 6-6 

This equation reflects the reality that each individual system follows its own degradation path, 

these are then modified to allow for varying uncertainty.  

                          Equation 6-7 

                                    Equation 6-8 

To include prior estimates of the parameters, Y, X, and Σ can be appended accordingly. 
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The priors are again assumed to follow a normal distribution with mean β0 and variances. These 

variances are represented in Σb as a diagonal matrix. The Ik matrix is the identity with the length 

equal to the number of coefficient parameters.  

6.2.3.1 Transition between the PHM and GPM 

To transition between the PHM and GPM it is assumed that the RUL distribution of the PHM is 

fairly normal. This is to facilitate the mathematics, and is a reasonable enough assumption as a 

prior. The RUL distribution from the PHM can be found first using the failure distribution.  
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                                                                          Equation 6-10 

Because the data is discrete, the probability mass function f is found for F. This probability mass 

function's weighted mean and weighted variance characterize the RUL distribution.  

Using this distribution, the prior equation can be substituted with 
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This substitution assumes a normally distributed point at the PHM estimated RUL. The variance 

is expressed in ΣPHM.  

This Bayesian transition can be used in conjunction with the previously presented Bayes OLS 

using path parameter priors. By appending all known priors, any source of information available 

can be used to calculate the posterior RUL estimate. As with all Bayesian statistics, the stronger 

the prior measured by the tightness of the prior distribution, the more influence it has over the 

posterior. Care must always be given in the appropriate prior weight according to the analysis. If 

the individual is more important, then the GPM should be weighted heavier. As more data is 

input, the priors are naturally decreased in influence.  However, when little GPM data is 

available, the more statistically based PHM will be weighted heavier. This Bayes approach 

provides a natural transition from the beginning of fault to end of fault.  

These Bayesian transitioning methods are currently being tested on data taken from test beds. 

These include the pump and heat exchanger accelerated degradation experiments. In addition, 

while the newly developed PHM transition has been codified into the PEP toolbox, it has 

undergone more robust testing and refinement. 
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7. Task 6: Performance Metrics Development 
Recent effort has been focused on the standardization of prognostic model performance 

evaluation based on meaningful criteria that can be used to compare the output of prognostic 

models not only within given application, but across the field of predictive engineering [Saxena 

2008].  Unfortunately, despite this large step forward in the evaluation of prognostic models, 

there has been a huge oversight in the fundamental evaluation criteria. Until now, many of these 

tailored prognostic model parameters focused almost exclusively on the evaluation of individual 

cases output by the model and implicitly reported this as a metric for the overall acceptance 

criteria for that model. This work seeks to correct this oversight, and presents variants on several 

well-known performance metrics that represent, and are in fact built upon, a multitude of known 

cases to which the prognostic model has been applied. 

Specifically, five separate metrics have been defined to sufficiently characterize the output 

predictions of a prognostic model: Mean Absolute Error (MAE), Weighted Error Bias (WEB), 

Weighted Prediction Spread (WPS), Confidence Interval Coverage (CIC), and the Confidence 

Convergence Horizon (CCH).  Each one, detailed below, captures a key aspect and desirable 

quality of prognostic predictions that can be quickly, easily, and intuitively compared amongst 

separately developed models in order to rank and rate their output performance. These metrics are 

built upon the errors and uncertainty associated with each prediction set, rewarding the 

minimization of both.  

7.1 Mean Absolute Error 

The Mean Absolute Error (MAE) is by far the easiest metric to compute, and in many ways is the 

most intuitive to understand. Unfortunately, this metric could also be argued to be the least 

informative about the overall performance of the model. Defined earlier, MAE is the average 

absolute difference between the model prediction Pi and the true Remaining Useful Life (RULi) at 

all times t and for all historic query cases i.  

                     
Equation 7-1

 

The advantage in the use of this metric is the MAE is determined in real times units that may be 

used to compare actual system lifetime. Similarly, one could also calculate the standard deviation 

of the prediction absolute error for a measure of the spread of these errors.  



85 
 

These metrics are useful for comparing separate models built upon similar data, or data from 

systems with comparable lifetime scales, but give no clear indication of prediction performance 

without some context to the data. Another shortcoming of these metrics is that they have the 

implicit underlying assumption that the errors are normally distributed, which may not always 

hold true and in some rare cases lead to very misleading indications. These standard formula 

metrics are also inflexible to individual requirements about the specifications of the predictions, 

and can be largely susceptible to outliers.  

Using MAE in the evaluation of prognostic prediction performance is severely limited because 

even though this metric provides a meaningful way to evaluate the expected error in the lifetime 

of the system it falls short when the system reaches end of life. The RUL estimates are more 

important near end of life than at the beginning and the MAE doesn't take this into consideration 

since it is just a mean of the RUL estimates. The remaining metrics introduced and described in 

this work help to overcome and fill in the gaps left by MAE and similar standard metrics. 

7.2 Weighted Error Bias  

The Weighted Error Bias (WEB) is the first of the lifetime percentage based metrics. WEB, as 

defined in              Equation 7-2, is a measure indicating the effective bias in all predictions as a 

percentage of the total unit lifetime.  

              
Equation 7-2 

 

From this equation it becomes evident that WEB is very similar to MAE except in two important 

respects. First, it is tallied and reported as a percentage of the total lifetime of the individual query 

unit, i. This allows for the intuitive inspection of the performance of a series of predictions 

without the need for some contextual setting. A model whose predictions yield a 10% WEB 

would be expected to be better than one with a 25% WEB regardless of the units or time scale 

involved. This also has the added benefit of implicitly scaling the errors, such that similar 

deviations from the true Remaining Useful Life (RUL) values for short-lived components would 

be weighed heavier than those in longer-lived units, even within the same historic data set. This is 

important, as an error of 20 time cycles is less significant if the unit in question lives 300 cycles 

as opposed to if it only lives 100 cycles.  
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The second difference is in the explicit importance weighting, , of the different errors based on 

their time in the lifecycle of the historic unit. This importance weighting can easily be tailored to 

the specific needs or desires of the end user, but a clear emphasis on the end of lifetime is the 

most meaningful for prognostic predictions. A 10% error near the beginning of unit life when 

there is 85% of life remaining gives plenty of time to act and take corrective actions, where a 

10% error with only 5% of life remaining could result in an unexpected failure if the unit were 

expected to live through the remaining cycles. An example of a weighting function that 

accurately reflects this end of life importance is the Gaussian Kernel Function with a mean value 

set to the lifetime of the unit and a bandwidth set to 50% of that lifetime.  

Clearly the optimal value for this metric is zero, indicating that the average prediction value is 

centered on the true RUL. In fact, this metric can also provide a crude method for model 

improvement by simply subtracting the indicated percent bias from all the model predictions. 

This method is extremely crude, and in nearly every case it would be better to readjust actual 

model parameter in order to create better predictions, but in the absence of that option, this can 

help to improve estimations. A less crude version of this would be to map and subtract the WEB 

at various points during the lifetime of the historic units. Binning error values based on their 

associated percent of unit life can help with this. 

7.3 Percent Error Value Binning 

The final three prognostic prediction performance metrics rely on quantifying the estimated 

uncertainty of prognostic predictions throughout the total lifetime of a query unit. In order to do 

this effectively, the 95% confidence interval (or some similar level of confidence interval) needs 

to be calculated at various points throughout the unit lifetime. One of the more straightforward 

methods for doing this is to create a set of bins evenly divided between 0 and 100% of system 

lifetime, and place each calculated percent error in the bin corresponding to the true percent of 

unit life for that error. In other words, first calculate the percent error for a given historic 

prediction, Pi(t), such that the percent error is the difference between the predicted RUL and the 

actual RUL divided by the query unit ,i’s, total lifetime.  

 

                             
Equation 7-3 
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Next note the corresponding percentage of actual lifetime (POL), defined by the current time, t, 

divided by the current unit’s total lifetime. Finally place the calculated percent error into the POL 

bin whose edges, B, are defined as:  

BLOWER < POLi(t) < BUPPER                           Equation 7-4 

Repeat for all historic predictions across all query cases, placing them in to the same series of 

corresponding bins. By virtue of the numbers all being converted into percentages, allows for the 

direct comparison and inclusion of these similarly located values with proper importance 

weightings applied based on their lifetime. 

Once this series of regular serial bins is populated, a 95% confidence interval around the mean 

value can be calculated from the 2.5% and 97.5% percentiles of the error set for each bin. Clearly, 

these percentages can be altered to suit specific application requirements if necessary. 

Additionally, the expected value for each individual bin can be calculated, creating an expected 

error bias that maps throughout the lifetime of a unit. As mentioned before, this bias map could 

be used as a rough means of improving prediction performance in the absence of better or more 

sophisticated methods. 

7.4 Weighted Prediction Spread 

It is an accepted truth that the quality of any calculated prediction can be defined by its associated 

uncertainty. Thus it follows that the quality of any prediction model should also be defined by its 

associated uncertainty. Additionally, much like the model prediction error and bias, not all points 

during the lifetime of the query system should necessarily be treated with equal importance. The 

predictions of Remaining Useful Life (RUL) made by a model are considerably more important 

near the end of the system’s life than they are at the beginning of life, since near the beginning of 

life there is comparatively much more time to react and compensate, or mitigate any impending 

faults or failure inferred from the prognostic model.  

The spread of model predictions at various points in life are an important factor in the total 

considerations of the uncertainty of a series of prediction. The prediction spread for each binned 

point of system life is calculated as the difference between the upper and lower bounds of the 

corresponding 95% confidence intervals from the binned error values discussed previously.  

Using the exact same importance weighting function as the Weighted Error Bias (WEB), the 

Weighted Prediction Spread (WPS) can be defined as:  
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Equation 7-5 

In this equation, the weighting function is based on the center value for each reference bin, such 

that each bin importance weighting, biW , is defined by the Gaussian kernel.  

                  
Equation 7-6 

Notice that the typical normalization factor associated with Gaussian kernels is rendered 

unnecessary due to the inherent normalization factor included in the definition of WUS. Although 

a kernel bandwidth of 50% is shown, other bandwidths can easily be substituted to accommodate 

specific needs. All the factors and values associated in the metrics based on the binned interval 

error values are listed and manipulated as percentages, allowing for quick intuitive evaluation of 

the effective important uncertainty of any given prediction set.  

With this metric, a 0% WPS alone would seem to indicate absolute certainty in all predicted 

values, but this may be misleading. In fact, all this indicates is that all predictions made are 

exactly the same, based exclusively on the percent RUL of the system in question. Because of this 

fact, this metric should always be coupled with the WEB to indicate if the predictions do, in fact, 

have enough spread to cover the true RUL (i.e. WPS  WEB). A more explicit and useful metric 

evaluating this coverage is the Confidence Interval Coverage (CIC), which should also be 

calculated, and is discussed in the next section. 

7.5 Confidence Interval Coverage 

Another important indication of the quality of a prediction set generated by any model,is whether 

or not the confidence interval of the prediction spread covers the true RUL. This effectively 

incorporates information relating to both the error bias and the error variance at given points in 

life. The metric is simply defined by the total percentage of binned error sets whose 95% 

confidence interval contains the true RUL. This is more rigorously defined:  

                      
Equation 7-7 
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This equation is interpreted as the sum number of true percent RUL values that are contained 

within their corresponding error bin set, divided by the total number of bins, and multiplied by 

100 to convert to a percentage. This additional metric verifies the total accuracy of the prediction 

set. An optimal coverage of 100% shows that the true value of any prediction is contained within 

the prediction spread or approximate confidence interval of the prognostic model’s predictions. 

When coupled with the previously detailed metrics, this gives a solid expectation of the accuracy 

and expected effective error over the total of system life predictions. The final vital element not 

conveyed by these metrics is the explicit end of life accuracy and precision. The Confidence 

Convergence Horizon fills this void. 

7.6 Confidence Convergence Horizon 

This final  metric captures and quantifies the end of life quality of both the precision and accuracy 

of a prediction set. A 10% Confidence Convergence Horizon (CCH) identifies the percentage of 

system RUL beyond which, all prediction confidence intervals are both less than 10% of the total 

system life and contain the true RUL. In other words, the CCH identifies a predicted time to 

failure where, once reached, it and all additional predictions can be trusted to be within 10% of 

the true value. Obviously a CCH of 100% would be optimal, showing that all predictions within 

the query set are within less than 10% of the true values.  

Although this seems to be a rather stringent criterion to meet, it is nonetheless very important. 

This horizon is a quick and intuitive identifier of the region of most confidence for a particular 

prediction set. Unfortunately, like any single descriptive metric, the CCH has the potential to be 

misleading if it is not considered along with the other metrics defined in this section. As an 

example, consider a model that predicts the RUL of a system within >10% during most of the 

system life, but due to an unlikely artifact, exhibits an 11% bias at the end of life. This model 

would produce a CCH of 0%, as there is no point in time when all following predictions can be 

trusted to be less than 10%. This does not, however, mean that the model produces unusable or 

even inaccurate results.  

Each of the listed metrics contains and expresses vital information required to develop a full 

understanding of a models performance, but it is often convenient to assign a single quantitative 

value of “goodness” to a particular model and prediction set. Described in the following section is 

a method for developing such a unifying metric. 



90 
 

7.7 Total Score Metric 

There has been proposed a sort of hierarchical ranking of some of the previously developed 

metrics [Saxena 2009]. To some degree, this work is able to eliminate the explicit need for this 

hierarchical system, and in its place supplies a single aggregate scoring metric to rank the overall 

performance of a particular prognostic model’s output predictions. Of the metrics detailed in this 

paper, four in particular can be merged to give a singular quantitative value of “goodness” for a 

prognostic model prediction set. These metrics, Weighted Error Bias (WEB), Weighted 

Prediction Spread (WPS), Confidence Interval Coverage (CIC), and the Confidence Convergence 

Horizon (CCH), detail a particular yet vital aspect of the total historic prediction produced by a 

given model. With this in mind, and given that each one of these metrics has been constructed to 

be listed in similar units of percent Remaining Useful Life (%RUL), it becomes obvious that a 

basic composite of these metrics can yield a meaningful, simple, and direct measure of the quality 

of a model prediction set. These metrics can easily be applied for quick quantitative comparison 

of multiple models’ prediction sets.  

 

                        

Equation 7-8 

Note that in this equation, both the absolute value of the WEB and the WPS are subtracted from 

100 to reflect that the minimums of these values are the desired quantities. N is any normalized 

vector weighting the importance of the four metrics. For simplicity and intuitive interpretation of 

the resulting number, a vector of [.25 .25 .25 .25] results in a simple mean of the metrics, which 

can then be used to rank the model’s performance out of 100%. Some of the model metrics 

contain similar information. This is not useless redundancy, but instead reflects the increased 

importance of these aspects when the metrics are combined. For example, if a set of model 

predictions exhibit 0% CIC, that prediction set would also by definition exhibit a 0% CCH. 

Coverage of the correct RUL within a confidence interval is one of the most important criteria 

any prognostic model should meet, so with the standard weighting set, the best total score the 

model could produce would be less than 50%, reflecting that the model has never produced a 

correct answer.  
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7.8 Prediction Metric Example Cases Studies 

To help further clarify and explain the prediction metrics, consider a standard pump and motor 

system with a mean failure time of about 275 operating hours with two common modes of failure 

with different mean failure times. Three separate simulated models were built to predict the RUL 

of these motors. The first is based strictly on statistical conditional time based probability of 

failure. The second two are built to simulate more effects based modeling types. In order to 

compare the three models, each one simulates a set of 100 predictions about similar sets of query 

cases and has the metrics detailed above applied to those prediction sets. 

Shown in Figure 7.8-1, the Model 1 prediction set for all 100 cases completely overlay one 

another. This is expected and due to the fact that this model’s output is based exclusively on the 

current lifetime of the queried system.  

 

Figure 7.8-1 - Model 1 RUL Predictions 

Despite the fact that each of the predictions for each of the individual cases is exactly the same, 

they represent varying percentages based on the true queried system’s lifetime. This is accounted 

for in the calculations of the performance metrics shown in Figure 7.8-2. 
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Figure 7.8-2 - Model 1 Prediction Performance Metrics 

The most intuitive and easily understood metric on this figure is the Mean Absolute Error (MAE), 

listed as 35.09 hours with an associated standard deviation of 26.23 hours. The MAE gives a 

good basic understanding of how much error to expect out of the model, and is good for 

comparing models that are run against the same data set. However, the three example models 

presented here are run with differing query data sets. The sets are taken from similar sets of pump 

systems, but the individual units and their true total lifetimes are different. Although MAE could 

be used to compare these models and prediction sets since the time units and expected average 

lifetimes are the same, the percentage-based metrics are more appropriate and generally 

informative. 

The most prominent prediction evaluation tool in this figure is the binned error average estimate 

and their associated 95% confidence intervals represented by the blue error bars. This contains 

the most total and useful information about the prediction set. From this chart it is obvious that 

early in life the model predicts the correct percentage of RUL on average, but also has high 

uncertainty, meaning it may in fact never predict the exact true RUL for a particular unit. This 

inference is confirmed by examination of the end of life binned error as the average model 

prediction value departs from the true RUL line at around 62% of life consumed (38% RUL) and 

loses even the 95% prediction interval coverage at around 85% of life consumed (15% RUL). 

Because this is a strictly time based model, it helps to confirm that the model is unable to 

precisely predict individual systems’ RUL, instead only calculating the average RUL over all 

historic systems. Although this chart of binned error is useful and contains a wealth of 

information, it does require some degree of examination and analysis in order to compare 

different model sets. The other percentage based prediction metrics provide that analysis.  
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The effective bias for this model, as calculated by the Weighted Error Bias (WEB) from              

Equation 7-2 is 5.86%. Again, this can be seen in the binned error analysis as the average 

estimation line begins to deviate from the true RUL line, particularly near the end of life. For this 

system, that means that there is an effective average bias of about 16 hours, but this does not 

mean that the expected error is 16 hours. This value, as well as the Weighted Prediction Spread 

(WPS), is considered an effective value because of their applied weighting function shown in the 

previous figure as a magenta dotted line, which allows them to be more effective at ranking the 

predictions. If for some reason, the more literal average values are needed, the same equations 

and metrics can be applied with a simple adjustment of the weighting function. This prediction 

set’s WPS is listed as 58.07% of life, reflecting the fact that there is a considerable amount of 

uncertainty associated with the predictions. 

The final two metrics listed are the Confidence Interval Coverage (CIC) and the Convergence 

Horizon (CH).  Reported at 83% and 0% respectively, these indicate that although the model 

uncertainty covers the true RUL 83% of the time, it never continuously falls within 10% of that 

true value towards the end of the unit’s life. 

All these metrics can be combined in order to give this model’s prediction set a total ranking of 

54.83% out of a possible total score of 100%. This should not be read as an indication that the 

model’s total accuracy is around 50% or that only 50% of the model’s estimations are trust 

worthy. Instead, this metric shows a quantitative evaluation of the model’s performance for this 

prediction set. It is a quick and relatable evaluation of the model’s “goodness” which can easily 

be used to compare against other models or other prediction sets. For example, if Model 1 is 

compared to Model 2 shown in Figure 7.8-3, one can quickly see that Model 2 has a total 

performance score of 75.02%, which is much better than Model 1’s 54.83%.  
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Figure 7.8-3 - Model 2 Predictions and Metrics Evaluation 

Looking at the individual metrics, it becomes clear why this model is ranked better. Firstly, it has 

100% CIC with a 16.5% CH meaning that not only is the model more accurate overall, but it also 

shows that the accuracy improves to near the end of life. Next, the effective prediction spread is 

16.4% of life, much lower than Model 1’s WPS. Finally, Model 2 has virtually 0% effective bias, 

meaning that all the predictions are centered on the true RUL.  

These metrics give a quick, effective, and qualitative method for comparing two different models, 

and if that were the only end goal the analysis could stop there. However, if there is opportunity 

to change and improve the models, which created the prediction sets, then the scalar metrics alone 

may not give the complete picture. Consider the prediction set developed by Model 3 in Figure 

7.8-4. 
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Figure 7.8-4 - Model 3 Predictions and Metrics Evaluation 

Model 3 has a total performance score of 48.36%, indicating that is worse than either of the two 

previous models. In fact, the only metrics which it outperforms both the other models are MAE 

and the WPS. Unfortunately, these alone would not necessarily merit further investigations into 

the development of this model. However, when the total binned prediction value map is 

investigated, it becomes clear that by removing a small bias in this model, these predictions 

would be expected to outperform either of the previous models. This same conclusion could be 

inferred from the scalar metrics, but a graphical examination of the binned values map is both 

more expedient and informative.   

7.9 Summary and Conclusions 

In general, estimation uncertainty comes from two sources, the variance and the bias. 

Unfortunately, when evaluating the performance of prognostic estimates, uncertainty alone is not 

enough to fully characterize the performance of the model estimations. Some temporal emphasis 

based on the current and expected lifetime of the unit or system in question must be taken into 

account. Shown here is a standardized method and metrics for evaluating prognostic estimations 

and incorporating scaled temporal importance of the measures of uncertainty reflecting both 
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accuracy and precision. The scalar metrics presented in this work help to provide clear and 

concise comparisons between both similar and dissimilar prognostic model prediction sets. In 

order to demonstrate and help to visualize the underlying meanings of each of the metrics, three 

separate sets of predictions made from three separate simulated prognostic models. From the 

results listed in Table 7-1 it is clear that Model 2 is the best performing model by a large margin. 

Table 7-1 – Summary of Model Comparison Results 

 Total Score MAE WEB WPS CIC CH 

Model 1 54.83% 35.09 Hrs 5.06% 57.80% 83.0% 0% 

Model 2 75.02% 15.39 Hrs 0.03% 16.40% 100% 16.5% 

Model 3 46.36% 10.64 Hrs 3.58% 9.99% 7.0% 0% 

 

Further, Model 3 shows great potential for improvement via a simple bias removal as can be 

inferred from the low Weighted Prediction Spread (WPS) coupled with the results of the binned 

prediction value map. A quick summary of each metric is listed below in Table 7-2. 

Table 7-2 - Metrics Summary 

Metric Name Quality Aspect Reflected Units 

Mean Absolute Error  

(MAE) 
Accuracy Real Time Units 

Weighted Error Bias  

(WEB) 
Timely Precision Percent of Unit Life 

Weighted Prediction Spread 

(WPS) 
Timely Accuracy Percent of Unit Life 

Confidence Interval Coverage  

(CIC) 
Accuracy Percent of Unit Life 

Confidence Convergence 

Horizon  

Timely Accuracy & Precision Percent of Unit Remaining 

Useful Life 
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(CCH) 

Binned Prediction Value Map Timely Accuracy & Precision Percent of Unit Life 

 

These metrics can quickly be adopted into a standard prognostics evaluation toolbox. A 

MATLAB based function for evaluating and displaying these metrics has already been developed 

and has undergone rigorous testing and evaluation. 

8. Task 7 and Task 8: Experimental Setups 
In order to further develop and evaluate many of the methods, tools, and algorithms investigated 

in this project, a collection of physical real-system data was required. This data needed to be 

analogous to physical systems present in industry operated plants with similar collected signals, 

and expected fault modes. This section presents the development of experimental test-beds for the 

validation of Prognostic techniques for the RUL analysis and prediction. The updated Process and 

Equipment Monitoring (PEM) and Process Equipment Prognostics (PEP) toolboxes, developed at 

The University of Tennessee, will be applied to the data collected from these experimental setups. 

Both anomaly detection algorithms and lifetime prognostic models complete with data driven 

transitions are utilized to predict the different PROaCT laboratory systems’ Remaining Useful 

Life (RUL This section presents the development and data collection process of these test bed 

facilities over the course of this project.  

8.1 Electric Motor Aging Experiment  

Motor Electric Power Research Institute (EPRI) originally funded the purchase and testing of ten 

5hp (horsepower) electric motors. These U5P1G U.S. Electrical Motors/Emerson general-purpose 

industrial motors were chosen as low cost analogs to the high power induction motors found 

throughout industry. Table 8-1 lists the full nameplate specifications of the motors used. 

Table 8-1 Motor Nameplate Specifications 

Brand U.S. Motors/Emerson Premium Efficient General Purpose Industrial Motor 
Model Number S5P1A 
HP 5 
RPM 3600 
Volts 208-230/460 
"C" Dim 15.9 
Frame 184T 
Full Load Amps 13.6-12.1/6.1 
Full Load Efficiency 88.5 
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Apx. Wt. (lb) 70 
SF 1.15 
Phase Three 
Motor Mount Foot Mounted 
Enclosure TEFC 
Type General Purpose Industrial Motor 

 

Each of these 3-phase, 3600 RPM motors were subjected to a cyclic thermal aging process, 

designed to induce accelerated insulation breakdown and corrosion within the motors. These fault 

modes have been selected as the most prominent and costly for inductions motors. The original 

accelerated aging plan was adapted from previous work performed by Upadhyaya (1997) and 

IEEE Standard 117, “IEEE Standard Test Procedure for Evaluation of Systems of Insulating 

Materials for Random-Wound AC Electric Machinery Degradation and Testing Plan.” 

According to IEEE Standard 117, several testing procedures may be chosen to perform 

accelerated degradation testing of motors. For Class F insulation (the type of insulation in the 

motors that will be tested during this project), the recommended testing time is 32 days at 170 

degrees C. For this testing, the motors have been divided into two groups, one which will be 

heated to 160° C, and one at a lower temperature of 140° C to create multiple condition sets. The 

temperature set lower than the IEEE standard for the “hot group” provided a slower, more 

realistic evolution of any degradation mechanisms and related features of the motors and allows 

for more accurate tracking and estimation of the degradation curve of the testing motors.   

8.1.1 Experimental Methodology 

Previous work concerning a similar aging program of electrical motors lead by Dr. Upadhyaya 

was also referenced during the design of this experiment. In that work, a condensation chamber 

was not used for moisture accumulation as recommended in IEEE Std 117 due to the difficult task 

of creating multiple condensation chambers for the motors being tested at the same time. The 

motors were instead quenched in a tub after being allowed to cool for six hours after the thermal 

degradation testing. After the quenching, the motors were allowed to dry overnight before 

beginning thermal degradation testing again. Since the primary focus of the experiment was on 

thermal degradation, this amount of moisture accumulation was sufficient for testing purposes, 

even though the motors did not use the procedure recommended by IEEE Std 117. Each 

accelerated aging cycle has been designed to take just over one week, and performed in one of 3 

identical EW-52402-91 Lab Companion Economy Mechanical Convection Oven. A detailed 

listing of the thermal aging cycle process is listed below. 
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Thermal Aging 

1. Heat motor in laboratory-grade oven for 72 hours 

2. Remove and allow to air cool for 6 hours.   

3. Quench in enclosed shallow water pool for 15 minutes  

(this acts as the suggested replacement for the recommended humidity chamber) 

4. Immediately place back in the oven and heat again for 72 hours.  

5. Air cool for 18 hours before performing “Startup Testing” 

 

 

Figure 8.1-1 Time Requirements for Aging and Data Acquisition 

Figure 8.1-1 details the time requirements for both an individual thermal aging and data 

collection cycle in hours. This chart shows that each individual aging and data collection cycle 

will take just under a week of total time. 

After undergoing each thermal aging cycle, the motor is mounted on a test bed, connected 

through an elastomeric coupling to a Winco generator, and instrumented with a data collection 

system to collect various key signals from the motor during both the transient startup and 

periodically during the steady state operations. The full list and specification of sensors is shown 

below: 

 Compact DAQ: NI cDAQ 9178 (8 slots) 
o 3x phases of current 

 Fluke i200s Current Clamps: Input/Output 600 V CAT 
 NI DAQ Module 9234 

o 3x phases of voltage 
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 NI DAQ Module 9225 
o 2x accelerometers (90 degrees apart: vertical and horizontal from ground) 

 0.0002 g resolution, +/- 50 g measurement range 
 NI DAQ Module 9234 

o Load current and voltage for the dynamometer  
 NI DAQ Module 9225 

o Motor speed from tachometer  
 ICP Laser Tachometer: Reads up to 30,000 RPMs 
 NI DAQ Module 9205 

o Thermocouple located in motor near the stator winding. 
 Omega K type 30 gauge Chromel Alumel surface mount thermocouple 
 Typical use range: 95C – 1260C 

o Acoustic sensor 
 PCB 130D20 ICP array microphone 
 Sensitivity 45 mV/Pa 
 Frequency Response (+/- 1 dB) 100 Hz to 4 kHz 

 

The current and voltage from the connected output generator are also monitored, but are largely 

ignored for the work in this paper. A photo of the setup is show in Figure 8.1-2. 

 

Figure 8.1-2 Motor Testing Setup 

 

Figure 8.1-3 shows the LabVIEW created user interface for the data collection.  
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Figure 8.1-3 LabVIEW Data Collection Interface 

The end sink for the supplied energy is a resistive load bank connected to the generator. Multiple 

startups are collected between aging cycles in order to help smooth trends and reduce 

measurement error in the analysis. The data is collected at just over 10kHz for slightly less than 

two seconds at a time with a NI LabView interface. The LabView data acquisition software 

collects and manages all signals as double precision floating point values before the collected data 

is stored in a comma delimited text file for flexibility in current and future data analysis. 
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Figure 8.1-4 Exemplar Collected Signals at Beginning of Life 

An example of the collected data, both startup and steady state conditions is shown in Figure 

8.1-4. Shown in this figure, there are significant differences between startup and steady state. 

Nearly all of the signals undergo significantly higher magnitudes during startup than those 

experienced at steady state. This additional stress forms the basis for the hypothesis of this work 

that transient conditions can exacerbate fault indications and provide additional useful prognostic 

information regarding the system. 

8.1.2 Initial Fault Mode Forensics 

After completing the testing from the initial set of motors several important aspects of the testing 

procedure became evident. First is that the main mode of failure involved the degradation of the 

shaft bearings. Secondary modes were largely trivial and centered on maintenance and setup 

induced faults.  

Following failure, motors were disassembled, inspected, and the results documented. The motors 

were disassembled by removing the end-bells and rotor, and then extracting the shaft and 

opposite end bearings with bearing pullers to prevent possible additional damage to the bearings. 
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The primary mode of failure was excessive starting torque cause by bearing degradation. Thermal 

damage to bearing grease and seal material during both accelerated aging and testing resulted in 

grease failure, namely separation of lubricant from stabilizers and introduction of material from 

bearing seals into the bearing cavity. Inspection of bearing internals revealed that virtually no 

lubricant remained in any of the bearings. In the case of the catastrophically failed bearing, which 

resulted in complete fragmentation of the inward-facing shield and seal, bearing internals were 

essentially dry. This bearing retained all balls, but much of the ball cage was ejected. All motors 

showed deposition of lubricant stabilizers below the bearing housings on both end-bells. 

Additionally, all bearings exhibited seal failure, with seal material found hardened inside and 

outside the bearing. 

It was also noted that all motors exhibited external wiring degradation where insulation had failed 

or wiring was exposed for connection to the test stand. Failure of terminal wiring insulation and 

breaks of terminal wiring generally occurred during handling, and sometimes due to interphase 

arcing. In most cases, this was repairable, though in multiple instances arcing generated sufficient 

energy to destroy all ex-casing wiring, precluding repair. 

These observations from the initial motor aging experiment prompted several changes for the 

aging procedure of the motors tested during this project. Additionally, a larger emphasis was 

placed on generating internal stator insulation failures. The changes implemented are summarized 

in the sections below. 

8.1.3 Motor Aging Experiment Test Procedure Modifications 

The originally tested motors failed predominantly due to lubricant failure-induced bearing 

degradation and electrical failures associated with degradation of the stator wiring harness. 

Neither of these failures modes were the main focus of this experiment, therefore to mitigate the 

processes that led to these modes, additional testing procedures as well as alterations to the testing 

conditions were implemented for the second set of motors. These alterations were aimed to 

prevent the mechanical degradation of the connection wires, provide an expected level of 

maintenance to the installed bearings, and accelerate the insulation aging of the test motors.  

The first of the new procedures removed the necessity to manipulate the stator wiring harness in 

the course of testing, thus eliminating the mechanical degradation of the external wire connectors. 

The primary leads are each wired into permanent ceramic connection housings with a set of 

simple replicable leads that can then be connected to the main power source. The ceramic 

terminal block is external to the terminal box, protecting the stator wiring. These leads have 
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soldered terminal leads to reduce corrosion of the wiring, and were arranged such that further 

manipulation of the internal wiring was unnecessary, thus preventing that mechanism of 

degradation.  

 

The second of the new procedures concerned the bearing failures in the previous motor aging test. 

The lubricant problem was mitigated by utilizing motors that feature re-greasable bearings, which 

is an uncommon feature for the small motors under test. A survey was conducted of industrial 

literature regarding greasing, but it was found that for greasing applications in extreme 

environments, the grease schedule is highly unpredictable. For an accurate determination of the 

appropriate grease volume, specific process knowledge in the environment for a specific bearing 

must be gained. For this experiment, such information is unavailable, likely because the rated 

temperatures of typical greases for bearing applications are below the temperature of 

environmental exposure. Also, unlike typical systems, the experimental motors have had their 

cooling capacities disabled. This was done primarily as a safety measure, as the vendor only 

provides plastic cooling fans that can disintegrate violently during use after a single heating cycle. 

The greasing schedule is expected to prevent bearing failures during the test, in spite of the 

service conditions. Multiple motors have required clean-outs of the shaft end grease lines, but all 

have shortly been returned to service with noticeable reductions in vibration.  

A final alteration to the testing procedure was to increase the aging temperature of the motors to 

180 degrees Celsius and eventually to 200 degrees Celsius. This increase was aimed at 

accelerating the internal insulation degradation. In conjunction with the bearing maintenance it 

was thought this would allow the motor stator degradation to become the dominant failure mode 

in the aging motors. 

8.1.4 Phase II Motor Selection 

The  primary criteria for selection of a motor for Phase II testing is a motor that is small enough 

to make testing economical and proceed in a timely manner. Secondly, the motor needed to 

permit the grease to be maintained in a condition which prevents bearing failures. Very few small 

induction motors permit re-greasing, as small motor service conditions combined with the 

excellent quality of modern commodity bearings dictates that the economical solution for most 

industrial consumers is a sealed bearing. The Baldor EM3613T is a three-phase induction motor 

utilizing the same bearing specification, the same frame, and similar electrical specifications. The 

bearings are re-greasable through standard Zerc fittings. Regreasing will be performed prior to 

each test. Grease contamination was minimized by cleaning the Zerc fitting and adjacent motor 
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surfaces prior to greasing, purging the grease gun prior to greasing, and greasing in accordance 

with vendor procedures to prevent over or under-greasing, both of which can be deleterious to 

bearing service life. 

Table 8-2 Baldor EM3613T Induction Motor Specifications 

SPEC. NUMBER:  36G271S042G2 

CATALOG NUMBER:  EM3613T 

FL AMPS:  11.8/5.9 

208V AMPS:  -- 

BEARING-DRIVE-END:  6206 

BEARING-OPP-DRIVE-END:  6205 

DESIGN CODE:  A 

DOE-CODE:  010A 

FL EFFICIENCY:  88.5 

ENCLOSURE:  TEFC 

FRAME:  184T 

HERTZ:  60 

INSULATION-CLASS:  F 

KVA-CODE:  L 

SPEED [rpm]:  3450 

OUTPUT [hp]:  5 

PHASE:  3 

POWER-FACTOR:  91 

RATING:  40C AMB-CONT 

SERIAL-NUMBER:  -- 

SERVICE FACTOR:  1.15 

VOLTAGE:  230/460 

8.1.5 Motor	Aging	Experiment	Results	

Unfortunately each of the motors in this secondary set failed due to undesirable mechanisms 

before producing any detectable fault indicators. These failures largely centered on the eventual 

degradation and failure of the external lead wires and the associated housing terminal box. Post 

mortem forensics showed nearly no visibly notable internal insulation degradation. Of the ten 

motors tested, none showed conclusive signs of internal degradation, instead all but on suffered 

eventual failure due to lead wire failure. The remaining motor, Motor 12, failed due to a ground 

fault during an improperly setup test procedure. Each of the implemented new test procedures to 

prevent bearing failure and mechanical degradation of the external lead wires appeared to be 

effective. However, though this extended the lifetime of these motors significantly, it did not 



106 
 

ultimately preclude the wiring lead box from being the primary cause of failure throughout the 

testing. A summary of the total testing cycles for each of these motors is provided in Table 8-3 

below.  

Table 8-3 - Motor Aging Cycle Summary 

      Cycles At Temperature: 

Motor  Start Date  End Date  180oF  190oF  200oF 

M11  1/11/2013  3/17/2014  38  8  1 

M12  2/12/2013  3/14/2014  30  10  2 

M13  2/12/2013  3/5/2013  3  ‐  ‐ 

M14  2/11/2013 3/18/2014  30  10  1 

M15  2/12/2013 3/14/2014  30  11  2 

M16  2/26/2013 3/21/2014  30  11  1 

M17  3/1/2013 3/25/2014  23  10  3 

M18  3/4/2013 3/25/2014  30  7  3 

M19  3/4/2013 1/20/2014  33  3  ‐ 

M20  3/4/2013 1/27/2014  26  5  ‐ 
 

The inferred reason for this is that the bulk of the induced thermal aging is not being directly 

deposited in the internal windings of the motors. Both the external housing and the exposed wires 

suffer the largest thermal gradients during testing due to their direct contact with the atmosphere. 

While this is unavoidable with the aging procedure detailed above, it did prompt second large 

revision to the aging regime. Detailed in the section below, the final procedure mechanically 

overloads the motors during testing to incite huge electrical current draws and thus increased 

internal temperatures directly at the internal windings. 

8.1.6  Motor Aging Mechanical Overload Testing 

In response to the continued unavoidable undesirable failures due to housing shorts of the motors 

under the thermal aging regiment, a new aging procedure was enacted. By mechanically 

overloading the motors during operation and allowing them to overheat due to the increased 

electric current draw, the internal wiring of the motors will bear the bulk of the induced stress 

prompting desired electrical failures. By focusing both electrical and thermal stress directly 

within the stator in this manner will also minimize the induced stress to the bearings and outer 

housing lead wiring, both of which have proved to be the dominate mechanisms of failure under 

the previous thermal aging cycles. 
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Two motors were acquired and stressed through mechanical overloading. The connected output 

generator was set to demand 7 horsepower during each test. This is 40% in excess to the 

maximum recommended load for the tested motors. In order to ascertain the most effective 

method for mechanically overstressing the motors, the two motors were run in two different 

operating modes. The first was run with intermittent stops and starts; one per every hour of 

operation. Not only is transient signal information collected during these times, which can add the 

potential for an additional level of data analysis in future extensions of this work, but this also 

adds an additional mechanism for stressing the motor. The second motor was run continuously at 

overload operations until failure. 

The first of these motors, designated as Motor 21, began to show signs of degradation within the 

first 40 minutes, as visible smoke began to emit from the wire terminal box. This is assumed to be 

the early indications of internal insulation vaporization. The overall temperature of the motor 

increased steadily throughout the aging test, which ended at 2 hours and 17 minutes from the 

initial motor energizing. The motor underwent a total a three startup-sequences at time zero, 60 

minutes, and 120 minutes into the test. The duration of these startups lasted well under one 

minute including the spin down process. At the conclusion of this test, the motor appeared to 

exhibit the symptoms of an internal winding short and was unable to be restarted after minor 

repairs were attempted.  

Motor 22, the second of these motors, was run continuously throughout the test with no 

intermittent startups unlike the first motor. Similar to the first motor, smoke began to be emitted 

at just under 40 minutes into the test. This test concluded at just over two hours with a single 

phase shorting within the motor resulting in an inability to produce the demanded load. These two 

initial tests indicate that this method of aging would be much more suited to short term data 

collection of electrical failures for mid scale motor systems. Additional follow-on work can use 

this simplified test plan to rapidly generate viable experimental data to develop and validate 

processing codes with. 

8.2 Large Neoprene Impeller Degradation Experiment 

One of the degradation data collection experiments in the University of Tennessee’s laboratories 

that were utilized in this project involves the accelerated degradation of multiple neoprene 

impellers in small-scale horizontal pumps. The pump contains a six bladed neoprene impeller, 

which has been subjected to high levels of heat stress. The aged impeller is then placed in the 

pump in order to determine the time to failure. The parameters that are monitored during testing 
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are vibration, differential pressure, and current of the pump. To determine the thermal 

degradation point of the neoprene impeller, a literature review was conducted to examine past 

work in the thermal aging of neoprene. The thermal testing methods for the impellers, the test bed 

facility, and data collection methods, as well as the initial findings of the data analysis are 

presented in this report. 

8.2.1 Literature Review 

To develop a testing procedure for the thermal aging of the neoprene impellers, a literature review 

into past studies of thermal aging of polychloroprene are investigated to determine the thermal 

degradation point. Also, since the point of the experiment is to degrade the impeller, it was also 

informative to review past literature on the stress-strain relationships of neoprene as it is 

thermally aged. 

8.2.1.1 Thermal Aging of Polychloroprene 

In this section, we investigate some of the accelerated thermal aging tests performed on pure 

neoprene, neoprene compounds, and vulcanized neoprene. Pure neoprene rubber consists of 

hydrocarbons, CH and CH2 linked with chlorine. Sulfur and other metallic compounds can be 

added to the neoprene to give vulcanized rubber or a neoprene compound [Gardner 1971]. For 

pure neoprene rubber, the thermal degradation point is given as 50 C [Ramuhalli 2012]. For 

neoprene compounds or vulcanized neoprene, the thermal degradation point can range from 100-

615 C [Dadvand 2000, Gardner 1971, Gillen 2005, Budrugeac 1990]. This wide range of 

temperatures for the degradation point depends on the fillers and additives added to the neoprene. 

This type of rubber does not have a true melting point as other polymers but rather goes through a 

degradation period that involves reduction of the weight of the sample by release of hydrogen 

chloride, this occurs since chlorine is a major constituent of neoprene. As the sample is heated to 

higher temperatures, the material decomposes and loses structure. The danger involved when 

heating this material to these high temperatures is that the release of volatiles such as chlorine and 

hydrogen chloride gas can be quite toxic. Figure 8.2-1 shows the percent of weight loss of two 

neoprene samples as the temperature is increased. 



109 
 

 

Figure 8.2-1 Percent Weight Loss vs. Temperature for Two Neoprene Compounds 
[Gardner 1971] 

Based on these findings, it appears that to achieve substantial degradation, the neoprene should be 

exposed to temperatures in excess of 350 C. Much of the remaining available literature focused 

on thermal aging the neoprene rubber at temperatures of 80-140 C for extended periods of time 

and then looking at any chemical or structural changes. In one such test, a neoprene compound 

was aged at 80 C for three months and chemical analysis was performed on the aged and pure 

sample in order to determine if there were any significant changes in the chemical makeup of the 

rubber [Dadvand 2000]. Figure 8.2-2 shows the pyrolysis results at 387 C for each of the samples. 
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Figure 8.2-2 Pyrolsis Results for Control & Sample Aged 3 Months at 80 C [Dadvand 2000] 

Looking at Figure 8.2-2 it is seen that the chemical peaks of each sample were virtually 

unchanged for each of the samples. This suggests that thermally aging at 80 C for extended 

periods of time would not be beneficial for this research. Finally, other studies examined the non-

Arrhenius behavior of the neoprene during thermal aging tests [Gardner 1971]. The Arrhenius 

relationship is best described as a linear relationship between temperature and remaining life of a 

component. The relationship states that for every 10 C rise in temperature, the remaining life of a 

component decreases by a factor of 2. In most cases, this relationship takes on a linear form, but 

in the case of the thermal aging of neoprene, there is a noticeable curvature in the resulting plots. 

The form of the Arrhenius relationship used in thermal degradation studies takes on the form 

[Budrugeac 1990]: 

 
)exp()(
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Equation 8-1  

Here, k(T) is a function for the constant rate of degradation, A is a constant, E is the activation 

energy, both based on the material properties, R the universal gas constant and T the absolute 

temperature. Figure 8.2-3 shows the Arrhenius plot of a neoprene sample plotted with the 

activation energy. 

 



111 
 

 

Figure 8.2-3 Arrhenius Plot of Neoprene Sample with Activation Energy [Celina 2000] 

The reason for the curvature in the Arrhenius plots that as the temperature and time of aging is 

increased, the activation energy of the rubber is of a lower value at higher temperatures than at 

lower temperatures. This means that it takes more energy at lower temperatures to degrade the 

neoprene, since the activation energy is higher, which occurs from oxidation of the samples when 

heated in air. Next, we will look at the mechanical changes of neoprene after thermal aging. 

8.2.1.2 Mechanical Changes after Thermal Testing 

In this section we examine some research into the mechanical changes in neoprene after thermal 

aging. When the rubber is exposed to temperatures above 100 C, cross linking of the chlorine and 

other compounds in the rubber stiffens the structure. This makes the rubber less flexible and can 

tend to break when exposed to stress or pressure, such as during operation of the pump. In one 

study, neoprene glove swatches were first soaked in acetone and then thermal aged at 100 C for 

16 hours. After aging, the tensile strength of the gloves was tested in order to determine if there 

was any change in the property of the rubber [Gillen 2005]. Figure 8.2-4 shows the results of the 

tensile tests after 10 of these cycles. 
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Figure 8.2-4 Change in Tensile Strength of Neoprene after Acetone Exposure and Thermal 
Aging [Gao 2007] 

Looking at Figure 8.2-4, it is seen that the tensile strength of the gloves reduces from 15 MPa to 

12 after four cycles, and after ten cycles reduces to 8 MPa. It is noted that the thickness of the 

neoprene swatches was only .75 mm, while the neoprene impellers used in the study are 

approximately 3.2 mm thick. This study does show that the neoprene material will stiffen after 

repeated thermal aging and this stiffening would help degrade the impellers during 

experimentation. Another study looked at thermally aging neoprene sheets 1.6 mm thick at 120 C 

for 24-168 hours and calculating a stress-strain curve relationship by testing the elongation and 

tensile strength of the samples [Budrugeac 1990]. Figure 8.2-5 shows the results of this study. 

 

Figure 8.2-5 Stress-Strain Curves of Neoprene after Thermal Aging [Celina 2000] 
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Looking at Figure 8.2-5, it is seen that there is virtually no change in the stress-strain relationship 

of samples aged for 24 hours when compared with the results for an unaged sample. At 48 hours 

of aging, the strain values of the samples start to show a decrease but the stress values are 

virtually the same as an unaged sample. After 96 and 168 hours of aging, the strain values for 

these samples are almost half of that for the unaged and the stress value decreases from 11 MPa 

to around 9 MPa. The results of the figure can be interpreted as an increase in the formation of 

cross-linking in the samples during aging. For a low cross-link density, the rubber remains soft 

and flexible and as the density of the cross linking increases, the structure of the rubber becomes 

more rigid or inflexible. This can cause the structure of the rubber to snap or break apart when 

pressure is applied to the sample [Celina 2000, Dadvand 2000, and Budrugeac 1990]. Based on 

these findings and that in the previous section, it was determined that testing of the impellers to 

find the thermal degradation point would be carried at temperatures of 160-280 C and then 

determine which temperature offered the correct amount of degradation that the impeller could 

still be used in experimentation but not immediately fail.  

8.2.2 Physical Setup  

This section describes the small-scale proof of concept experiment. This experiment focuses on 

thermally aging the neoprene impellers used in small-scale pumps and then running the pumps to 

failure. Here, failure constitutes the inability of the pumps to draw any water from a common 

sump. The test bed for the accelerated life testing of the neoprene impellers consists of four 

small-scale 115 Volt transfer pumps mounted six feet above the common sump, which contains 

only water. Figure 8.2-6 shows the test bed facility used in the experiment. 
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Figure 8.2-6 Experimental Test Bed Setup 

The signals measured from the pumps include current drawn by the pump, which is measured by 

a standard current clamp attached to the power cord of the pump. A differential pressure 

transducer measures the differential pressure across the inlet and outlet of the pump. Finally, the 

vibration is measured by an accelerometer that is mounted to the pump housing. The sampling 

frequency of the signals is 1024 Hz and data is recorded for two seconds every ten minutes. A 

listing of the components used is shown in Table 8-4. 

Table 8-4 Components Used in Testing 

Use Manufacturer Name Model 

Degraded Unit Jabsco Self-Priming Transfer Pump 115 Volt AC PC2

Current Fluke Current Clamp I200s 

Accelerometer PCB Piezotronics ICP Accelerometer YJM352C18 

Pressure Transmitter GE Pressure Transducer M4020ED01R 

8.2.3 Thermal Aging Procedures: 

It was found during preliminary aging tests that many of the temperatures listed for the 

degradation of neoprene did not apply for this particular impeller material. Impellers were first 
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heated at 45, 80, 100 and 140 C in an air circulated oven for upwards of 6 hours and then placed 

into the pumps. It was found that using these temperature ranges that there was no appreciably 

degradation of the impellers when used in the pumps. Since the impeller material is vulcanized, 

the impellers were next heated at temperatures of 240, 260 and 290 C for upwards of 6 hours. It 

was found that using these high temperatures severely stiffened the material and the blades of the 

impellers snapped when slight pressure was applied. Next, temperatures ranging from 150 C to 

190 C were used to determine which would cause some degradation but have the impeller remain 

flexible enough for operation in the pump. The optimum temperature that was settled on was 165 

C and an aging time of 1.5 hours. This temperature and time caused some degradation but not so 

much that the impeller would fail prematurely. Typically, the impellers lasted from 1-5 days but 

what was also found was that some impellers lasted 3-7 weeks. Future tests with this type of 

material would need to have the aging temperature or time increased so that the slower 

degradation mode would not appear and the range of failure would be more consistent 

8.3 Heat Exchanger Fouling Experiment 

This test bed experiment was designed in an effort to validate the PEM and PEP toolboxes 

effectiveness in developing prognostic models. When designing the heat exchanger, the goal was 

to generate data that effectively represents time-series data with a reliable degradation mechanism 

as well as accurately represent data from a commercial heat exchanger. The accelerated test bed 

was designed with the goal of producing degradation data sets in short periods of time in 

comparison to true reactor heat exchanger maintenance schedules, which can vary from 6 to 18 

months on average. The purpose of the test bed data was to validate functions that select 

prominent features, develop models trained on unfaulted data that produce trending residuals, 

optimally combine residuals into a prognostic parameter, calculate RUL and corresponding 

uncertainty, and make maintenance schedule decisions based on these calculations.  

8.3.1 Experimental Setup 

The design of the accelerated heat exchanger test bed was developed to produce data similar to 

that from a commercial heat exchanger. Early accelerated test bed designs were chosen to 

produce data over a 14-day cycle compared to maintenance schedule of roughly a year for 

commercial (reactor) heat exchangers. The heat exchanger chosen for accelerated degradation 

application is a 64-tube counter-flow shell-and-tube BASCO heat exchanger. To facilitate the 

failure mechanism, kaolin clay is added to the heat exchanger hot leg, which expedites particulate 

fouling on the heat exchanger tube walls. At the beginning of each cycle, 105g of clay are added 

to initialize the clay/water mixture, and then each subsequent 48 hours an additional 75g of clay 
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are added. This keeps a consistent concentration throughout the operating cycle. To capture the 

data, several transducers are placed at vital points along the heat exchanger setup. The failure 

mechanism of the heat exchanger that this project is trying to detect is particle fouling. When clay 

particles accumulate on the walls of the heat exchanger, the heat transfer between the hot and 

cold legs is impaired. In order to determine the heat transfer for the heat exchanger, the following 

must be measured: hot leg inlet temperature, hot leg outlet temperature, cold leg inlet 

temperature, cold leg outlet temperature, hot leg flow rate, cold leg flow rate. The inlet and outlet 

pressure of the hot leg is also measured in order to manipulate the flow rate to achieve consistent 

cycles. There are also four temperature sensors placed throughout the heat exchanger tubes, 

which measure the temperature gradient across the heat exchanger. A plot of the 12 sensors for 

the heat exchanger setup is shown in Figure 8.3-1. 

 

Figure 8.3-1 Schematic of heat exchanger physical setup 

To heat the water in the hot leg, there are three 250W heaters placed within the test bed’s 15-

gallon tank as seen above. To force flow through the heat exchanger, a 0.5HP pump is placed at 

the bottom of the system. The flow rate is controlled by two valves; a ball valve (XV-2) for rough 

flow control, and a needle valve (FV-1) for fine flow control. The clay is added every 48 hours 

through the port at valve XV-3.  
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Three National Instruments modules are used to read the transducer values from the test bed. The 

voltage signals from the data acquisition board are processed using a LabVIEW program shown 

in Figure 8.3-2. 

 

Figure 8.3-2 View of program structure for data acquisition using LabVIEW software 

This program outputs the 12 signal values to an excel file, which is then extracted into a 

MATLAB file using the function in Appendix 14.3. This data can then be processed for 

prognostic model development.  

8.3.2 Experiment Modifications for Improved Degradation Cycles 

After several cycles were run, a few modifications were considered in order to improve the 

consistency of each cycle, as well as remove artifacts within the data that could potentially harm 

future modeling efforts. Early designs had the heat exchanger running in same-flow direction, 
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meaning that both the hot and cold legs ran from the right side of the heat exchanger to the left. 

This was quickly changed to counter-flow operation, which had a more desirable physical model, 

as well as produced better observable degradation in the data. Another change that was made to 

the system was the addition of 75g of clay every 48 hours after starting the heat exchanger. 

Originally, the 105g at the beginning of each cycle was the only clay added. It was found that 

over the 14-day cycle, some of the clay would adhere to the walls of the heating tank. In order to 

maintain a relatively constant clay/water concentration, the additional clay amount was chosen. 

Similarly, another modification to the system was the addition of a ball valve on the return hot 

leg, which could be opened to exhaust a small amount of clay/water mixture in order to visually 

inspect it for concentration. This modification is shown in Figure 8.3-3. 

 

 

Figure 8.3-3 Drain modification to heat exchanger for clay concentration sampling 

Currently, this addition allows for visual inspection to determine whether or not the clay 

concentration remains constant throughout the cycle, and is achieved by comparing the test 

sample to known concentration cases. For the time being, visual inspection has proven to be 

adequate in the absence of more costly and time-consuming quantitative tests. In Figure 8.3-4 is 

an example of visual inspection. 
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Figure 8.3-4 Visual check of clay/water concentration through a cycle 

The goal of the visual inspection is to make sure there is no noticeable change in concentration 

over a cycle. The last modification to the heat exchanger experiment was made to the procedure 

when adding clay. Originally, every 48 hours when the clay was to be added to the system, the 

procedure was as follows: turn off pump, open feed-valve, add clay/water mixture, close feed-

valve, turn on pump, slowly open valve to bleed air out of the system. The results of this process 

over a 14-day cycle are shown in Figure 8.3-5. 

 

Figure 8.3-5 Plot of features and signals for a single cycle (cycle 4) without filtering or data 
acquisition modification 
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In the figure above, it can be seen that when the system is opened to add clay, there are large 

spikes in the data. For some cycles, the system was thrown into a transient for several thousand 

observations (in cycle 4 above this corresponds to observations ~35000 to ~60000). These 

transient locations, as well as each data spike, significantly impaired modeling efforts. To reduce 

these artifacts in the data, the procedure for adding clay was slightly modified. Rather than 

leaving the data acquisition software on (recording) while the clay was added, the procedure was 

changed and the data acquisition was paused while the valve was open and the pump was off. 

After the clay is added, the valve closed, the pump turned back on, and the system air bled off, 

and then the data acquisition software is turned back on effectively removing each data spike. The 

results of a cycle with this new procedure are shown in Figure 8.3-6. 

 

Figure 8.3-6 Plot of features and signals for a single cycle (cycle 11) when data acquisition 
modification is implemented 

As the figure shows, there are far fewer large spikes in the data. It can still be seen where the 

system is opened, but the models that result from the cycles without the spikes are improved. A 

further procedural modification to note is the addition of two operational days at the beginning of 

each cycle to gather unfaulted data, when no clay (including the initial 105g) has been added to 

the system. This creates training data with no clay fouling to influence the data. This modification 

has only been recently implemented, and is not present in the models discussed in future sections 

of this report. 
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8.3.3 Status of Experiment/Operating Conditions 

There are 16 completed heat exchanger cycles. 8 cycles were completed at 1 gallon-per-minute 

operating in the cross-flow direction. One cycle was completed at 1 gallon-per-minute operating 

in the same-flow direction (for comparison). 7 cycles have been completed at 1.5 gallons-per-

minute operating in the cross-flow direction. The different operating conditions allow for Type II 

prognostic models to be developed, as well as increased Type III model robustness, which will be 

discussed in depth in future sections. There is an additional 1.5 gallons-per-minute cycle to be run 

starting next week, and is predicted to be complete before the end of this project resulting in a 

total of 8 cycles at 1 gallon-per-minute, and 8 cycles at 1.5 gallons-per-minute. After making 

several repairs to the heat exchanger through the course of this project, the heat exchanger is still 

in working condition and ready for additional future cycles if necessary.  

8.3.4 Data Pre-processing 

In current modeling efforts, there is not a dedicated unfaulted data set. In order to train a model, 

the first 10 hours of operating data is assumed to be unfaulted, and is cut from the faulted data for 

each cycle. Both the unfaulted and faulted data sets are then passed through a series of filters and 

manual cleaning steps in order to remove irrelevant artifacts in the data, as well as prepare the 

data for down sampling. By using median filters, information contained in observations that are 

removed during down sampling can be merged into the remaining data. An example of the 

filtering method applied to the faulted data is the hot leg flow rate signal shown in Figure 8.3-7 

before and Figure 8.3-8 after pre-processing.  

 

Figure 8.3-7 Example of the hot leg flow rate before pre-processing 
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Figure 8.3-8 Example of the hot leg flow rate after stage one of pre-processing (spike 
removal - blue) and stage two of pre-processing (filtering and cleaning - red) 

The faulted cycles are then cut to remove excess observations; the training, testing and validation 

data is generated using vector selection function from the PEM toolbox. At this point, the data is 

ready for modeling.  

8.3.5 Experimental Results 

Each completed cycle includes data for the following sensors: temperature of the hot log in, 

temperature of the hot log out, temperature of the cold log in, temperature of the cold log out, 

mass flow rate out of the hot side, mass flow rate out of the cold side, pressure of hot leg in, 

pressure of cold leg out. The data from cycle 6 is plotted in Figure 8.3-9. 
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Figure 8.3-9 Plot of signals after cleaning for a single cycle (cycle 6) 

A plot of example features is included in Figure 14.1-1 following this section of the report. The 

degradation due to fouling can be observed in the increased temperatures across several signals 

over time.  

8.4 Passive Material Test Bed  

PNNL has recently developed a set of passive component (materials) degradation assessment test-

beds. The objective of these test beds is to enable in-situ measurement of materials degradation 

using multiple nondestructive evaluation (NDE) methods. The measurement data from these test-

beds is intended to assess two key questions: (1) can advanced NDE methods be used to identify 

degradation precursors (i.e., signatures that are sensitive to materials micro structural changes that 

are indicative of damage accumulation prior to the onset of visible cracks) and (2) can advanced 

NDE measurements of precursor states be used to predict remaining useful life of the material or 

component, under typical stress conditions? 

This section briefly discusses the different NDE methods that are being utilized, as well as the 

test beds themselves. NDE measurements being considered for this project include ultra sonic 

transmissions, magnetic Barkhausen noise, and acoustic emission. 
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8.4.1 Nondestructive Evaluation Measurements 

The challenges associated with characterization of aging in NPP materials are significant (Doctor 

1988; Dobmann 2006).  Current NDE techniques used for NPP in-service inspection (ISI) to 

detect materials degradation are typically applied to detection of large flaws that occur near the 

end of component life.  However, recent years have seen a move towards NDE for early damage 

detection in NPP materials (Bond et al. 2009, 2011).  Monitoring for early detection of materials 

degradation requires novel sensors and enhanced data integration techniques.  A range of acoustic 

and electromagnetic measurement methods may be suitable, including non-linear acoustics 

(Cantrell and Yost 2001; Ogi et al. 2001), eddy current (Lois and Ruch 2006; Ramuhalli et al. 

2010) and magnetic Barkhausen emission (Raj et al. 2003; Dobmann 2006).  However, the 

sensitivity of these techniques to precursors from damage mechanisms of interest to LWR long-

term operations is not clear, and needs to be quantified.  Further, there are still no accepted 

measurement technologies for the detection and assessment of some degradation mechanisms 

unique to NPPs, such as void swelling. 

The magnetic Barkhausen effect is a result of the magnetic hysteresis of ferromagnetic materials 

(Jiles 2000).  The magnetic flux density in ferromagnetic materials placed in an external applied 

magnetic field is a function of the applied magnetic field, with larger numbers of magnetic 

domains within the material aligning with the applied field direction with increasing applied field 

strength.  This realignment is, however, not a continuous process, since the presence of 

dislocations or other damage pre-cursors results in domain wall pinning. Increasing the applied 

field strength results in abrupt realignment of some domains, and is accompanied by a release of 

energy that may be detected using a sensing coil.  

Like all electromagnetic methods, the magnetic Barkhausen method is predominantly a near-

surface measurement, with the standard depth of penetration (the distance into the material where 

the induced current density decreases to 37% of its value at the surface) decreasing with 

increasing frequency (ASNT 2004) defined as: 
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Equation 8-2 

where f is the excitation frequency, µ is the magnetic permeability of the material, and σ is the 

electrical conductivity.  For non-ferritic steel (such as 304 or 316L), the skin depth at 1 kHz is 

about 13.1 mm. In many stainless steels, the effect of increasing damage (through mechanisms 
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such as fatigue loading) is an increase in dislocation density.  At the same time, in certain steels, 

damage can result in conversion of austenite to a ferritic phase.  The impact of these changes is 

two-fold, resulting in local changes in conductivity and permeability.  These phenomena combine 

to impact the Barkhausen noise measurement from steels subjected to aging and degradation.  

However, the correlation between the measured parameters and the amount of damage is not 

linear, and is a function of several other variables (such as hardness).  The Barkhausen noise 

measurement method has been applied to determine residual stresses in ferritic steels, and to 

determine the amount of hardening or cold work.  Studies have also shown that this technique is 

sensitive to damage precursors in ferromagnetic materials, and quantities such as the energy and 

peak value in the Barkhausen signal have been shown to correlate well with level of damage in 

materials (Parakka et al. 1997; Gorkunov et al. 2000; Sullivan et al. 2004; Sagar et al. 2005; 

Hakan Gur and Cam 2007). 

A detailed history and introduction to acoustic emission testing is provided in the American 

Society of Nondestructive Testing (ASNT) Handbook (ASNT 2005).  Fundamentally, acoustic 

emission (AE) is the elastic energy released during deformation of materials (ASNT 2005).  The 

released energy travels as a transient elastic wave in the material and is typically recorded using a 

transducer that is located at some distance from the AE source.  In metals, several phenomena 

give rise to AE, including crack initiation and growth, phase transformations, twinning, 

deformation, etc.  Factors such as leaks also give rise to changes in the local stress gradients, 

resulting in a transient elastic wave. 

8.4.2 Bench-Scale Test Beds 

There are several bench-scale test-beds under development at PNNL that are related to the onset 

of fatigue cracking. The first of the test setups is to study thermal fatigue while the second is to 

study mechanical fatigue. In both cases, stainless steels (304 grade and 410 grade) are used 

initially. 

The thermal fatigue bench-scale setup uses tubular specimens, Figure 8.4-1, to enable relatively 

easy online nondestructive monitoring.  The tubular specimens are heated from the inside with 

periodic cooling on the outside.  Heating is accomplished by means of a cartridge heater on the 

inside of the hollow specimen, Figure 8.4-1, while cooling using the water sprays was from the 

outside.  The resulting thermal stresses initiate a thermal fatigue crack on the outside surface of 

the hollow specimen, providing easy access for both online (either continuously, or in interrupted 

test mode) and offline (i.e., by removing the specimen from the test setup) NDE measurements as 

well as planned destructive analysis of the specimens. 
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Figure 8.4-1  Example of Tubular 304SS Specimen and Cartridge Heater 

Two test stations with hollow 304 stainless steel (SS) rods are available (Figure 8.4-1).  At each 

station, one specimen is heated to temperatures up to 600°C and cooled to temperatures as low as 

30°C by a periodic water spray controlled by a timed solenoid valve arrangement. Figure 8.4-2 

presents a snapshot of the fatigue process in operation at both stations, with one specimen (upper) 

just starting the heating cycle while the other (Figure 8.4-3) just starting the cooling cycle. 

Thermocouples are used to monitor and control the heating and cooling cycles.  The thermal 

cycles for these runs are set to 4–5 seconds of water cooling and a total cycle length of 

50 seconds, or 72 cycles per hour. This amount of cooling allows the sample temperature to drop 

from about 600°C to 30°C in the center portion of the heated rod for a maximum thermal fatigue 

stress.   

Specimens Water Jets Water Pan 
with Drain

AE Sensors

Thermocouple leads 

 

Figure 8.4-2 Thermal Fatigue Setup with Two Stations.  Tubes are heated and cooled 
independently at each station.  The setup shown has two water jets that impinge on the top 

of the heated specimens, assorted control and recording thermocouples, and acoustic 
emission sensors attached with clamps to the upper sample. 
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Figure 8.4-3 Thermal Fatigue Setup Operation.  The upper sample has cooled below the 
visible thermal temperature while the lower sample has just started the cooling cycle and is 

still red hot.  The shape of the water jets can be seen in this photo, most clearly for the 
upper sample. 

The mechanical damage setup uses specimens of 410-grade stainless steel in an interrupted 

tensile experiment. The specimens are ASTM-standard tensile test specimens, with a gauge 

length of 6 inches (152.4 mm) and specimen thickness of 0.375 inches (9.5 mm). The specimens 

are annealed prior to the tensile test to ensure that all samples have the same initial stress state. 

The specimen is held in an Instron MTS machine (Figure 8.4-4) and strained in increments of 

approximately 2%. After each test, the stress is released and measurements made at multiple 

(typically 2-3) locations in the gauge region on the specimen. The locations are generally selected 

to be symmetric about the center of the specimen. The specimen design and applied loading is 

such that the strain in the specimen is expected to be uniform along its gauge length (at least until 

damage localization and necking of the specimen occurs). As a result, the expectation is that the 

measured data at the selected locations would be similar (within measurement noise) until 

damage localization occurs, at which point the measurements at the different locations should 

start to deviate. At each location, multiple measurements are typically made to assess 

repeatability and quantify measurement noise levels. Probe placement is done manually, with the 

probe lifted away from the surface between successive measurements. The specimen is then 

placed in tension, strained by an additional 2%, and released. Measurements are again made at the 

same locations. This process was repeated until the specimen failed.  
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 (a)                                                                           (b) 

Figure 8.4-4 (a) Experimental setup for tensile test. (b) Typical measurement locations on 
tensile specimen. 

8.5 Offsite Bearing Testing Facilities 

The University of Tennessee also collaberated with the AMS Corporation to collect and share 

bearing degradation data that was used for prognostic modeling. This data will be used to verify 

and validate the technologies and methodologies developed during this project. The AMS test 

bed, shown below in Figure 8.5-1, consists of a steel frame with two welded bearing mounts to 

support the test bearings.  

 

Figure 8.5-1  AMS Bearing Test Bed 

BOTTOM

TOP
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A hydraulic cylinder is mounted directly above each bearing and pressurized by a hydraulic hand 

pump to apply a large radial force and accelerate the degradation rate. A base-mounted AC motor 

rotates the steel shaft inside each bearing at 3450 revolutions per minute. Accelerometers (IMI 

603C01) and ultrasonic sensors (Ultra-Trak 750) are magnetically attached to each mount to 

monitor sonic and ultrasonic vibration of each bearing. Ultrasonic sensors are used in this test bed 

to evaluate if they can provide an earlier indication of bearing degradation than the 

accelerometers. 

8.5.1 Experiment Setup  

The experiment at AMS focused on daily application of a predetermined load to a bearing, and 

then running this bearing to failure, with the goal of trying to determine how much life a typical 

bearing has remaining after a load is applied. The only measurements taken during the 

experiment were vibration and audio signals. 

Data was collected using a sampling frequency of 12500 Hz. During the course of the experiment 

30 bearings were tested to failure, with failure times ranging from 5-500 tests. Investigation of the 

supplied data sets showed that some bearings were tested and had measurements from eight 

signals while other bearings only had measurements from four signals. Table 8-5 lists the signals 

recorded for the each of the previously mentioned cases. 

Table 8-5 Bearing Experiment Measured Signals 

Case/Signal Number 8 Signal Cases 4 Signal Cases 

1 Horizontal Inner Vibration Horizontal Inner Vibration 

2 Axial Inner Vibration Axial Inner Vibration 

3 Horizontal Outer Vibration Horizontal Outer Vibration 

4 Axial Outer Vibration Axial Outer Vibration 

5 USLVL Inner Vibration  

6 USLVL Outer Vibration  

7 US Audio Inner  

8 US Audio Outer  

 

It is unclear why some bearings were measured with fewer signals, so each of the cases will have 

to be analyzed separately.  
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8.5.2 Data Analysis 

In this section, some of the preliminary results are shown involving the extraction of useful 

features from the supplied data in both the time and frequency domains.  As mentioned before, 30 

bearings were run to failure during the course of the experiment, with a range of failure times 

occurring between 5-500 tests. The data was sampled at 12500 Hz and each of the separate tests 

had 20972 observations. Emphasis was placed on bearings that had a large number of tests before 

failure, since bearings that have failed quickly will not be very useful for modeling as trends 

indicative of impending failure will not typically manifest in the time or frequency domains. 

Therefore these bearings will not be considered during analysis. The goal of the data analysis is to 

extract a set of useful features that show trends that tend to failure. Ideally, all of the bearings 

considered should have the same functional trend so that useful prognostic parameters and 

models can be developed. First, some results in feature extraction in the time domain are shown, 

and next the analysis of the frequency domain will be provided. 

Time Domain Preliminary Results 

A useful method for extracting feature information in the time domain from periodic signals, such 

as those found in rotating machinery, involves calculating the statistical moments in a windowed 

fashion through the course of testing. This procedure is the same one that was used in the motor 

degradation data analysis. For this current project, 2 data points were extracted from each of the 

tests for each of the bearings considered. As an example, the first bearing file had 87 total files, 

and so for each statistic there are a total of 174 data points. Many of the data files contained a 

sensor bias of 10 Hz which was removed during processing in order to mean-center all signals so 

that the bias would not carry over into further analysis.  

An example of an unusable extracted feature is shown in Figure 8.5-2. The feature shown is the 

mean of the signals in the first bearing file. 
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Figure 8.5-2: Bearing 1 Feature Plot: Skewness 

Looking at the figure, it can be seen that the skewness values for bearing 1 do not show any type 

of trend as testing progressed. Rather, all of the signals show a fairly constant value. One thing to 

consider is to track signals that show a positive or negative skewness value as testing progresses. 

During testing, Signals 5 and 6, which are the vibration measurements, show positive skewness 

while other signals do not.. Next, the kurtosis values for bearing 1 are shown in Figure 8.5-3. 
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Figure 8.5-3: Bearing 1 Feature Plot: Kurtosis 

Looking at the features in the plot, it can be clearly seen that some of the signals show a marked 

increase in kurtosis magnitude as the testing progressed. Features like these are useful for 

modeling because the change in the kurtosis indicates that the system is nearing failure, which 
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occurs here around observation 170. These features would need to be compared with the 

remaining bearing files to determine if a similar type of trend is present. So far, 4 other bearing 

data sets show this type of trend, while the others do not. As a last example, the RMS values over 

time for bearing 1 are shown in Figure 8.5-4. 
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Figure 8.5-4: Bearing 1 Feature Plot: RMS 

The RMS values for most of the signals in the plot show a change at observation 20 and then 

increase in value as testing progressed, with Signal 5 showing the largest amount of change. 

While not as clear a trend as seen in the kurtosis feature, the RMS feature also changes in 

magnitude along with the kurtosis feature such that both can be included when developing a 

prognostic parameter, though some additional processing to smooth the features will be needed. 

In total four additional bearing files show this type of trend in the RMS feature. In the next 

section, some preliminary results from analyzing the bearing data in the frequency domain will be 

shown. 

Frequency Domain Preliminary Results 

Another method that has been found useful for extracting feature information from raw signals is 

to examine the data in the frequency domain. As in the motor degradation data analysis, certain 

frequency peaks and frequency bands can be tracked through time or as testing progresses, and 

the results can be examined for trends. This method is typically accomplished by calculating the 

Fast Fourier Transform (FFT) and tracking the peaks through each FFT of each test file for all the 

bearings. Due to the nature of bearing operation, there will be certain frequency peaks from the 
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inner and outer race elements of the bearing, as well as a general ball pass frequency of the 

bearing. The power in these frequency peaks or the RMS values in these frequency bands can be 

tracked through each test, and thus the large amount of data can be reduced to a smaller and more 

usable size. Also, since the experiment involves rotation, other frequency peaks that can be 

tracked will be present in the FFT. As the bearing experiences more damage, the rotating bearing 

mount will experience those changes in the power of its dominant peak, and these changes can be 

tracked over time. To date, the exact model of the bearing is needed to determine the race and ball 

pass frequencies, so the preliminary frequency domain analysis has focused on looking for large 

changes in dominant peaks from the start of testing to the end of testing.  

Figure 8.5-5 shows various snapshots of results from ultrasonic data collected on a failed test 

bearing.  Each snapshot progresses in time (i.e. Figure 8.5-5 (a) being the earliest and Figure 

8.5-5 (d) being the latest) and provides the Power Spectral Density (PSD) as a function of 

frequency for the ultrasonic sensor data. As illustrated in the figure, the amount of ultrasonic 

energy increases over the life of the bearing until failure occurs shortly after the snapshot shown 

in Figure 8.5-5 (d).   

 

Figure 8.5-5  Progression of Ultrasonic Spectra through Time 

Work in the frequency domain has focused on examining the change in size or power of the FFT 
from the first and last tests for each bearing. The dominant frequencies for each signal can be 
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identified, and later their maximum value can be tracked over testing. An example for Signal 1 of 
bearing 1 is shown in Figure 8.5-6. The top plot shows the FFT for the first test and the bottom 
plot shows the FFT for the last test. 
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Figure 8.5-6: Bearing 1 Signal 1 FFT Plot 

The major thing to notice in the FFT plot for this signal is the large reduction in the peak value 

from the first to the last test, which is on the order of 100 for this signal. The scale was set 

differently in the figure because the peaks in the bottom plot were impossible to see if using the 

same scale as the top plot. The preliminary results were found to be the same for each of the 

signals examined for several bearing files. Any of the large peaks in the top plot of the figure can 

be tracked through all tests, since all of the large frequencies significantly decreased in peak value 

as degradation increased. The first large frequency peak in Signal 1 of bearing 1 occurs at 200 

Hz, so the maximum value of this peak in the range of 198-202 Hz is tracked through all 87 tests 

and is shown in Figure 8.5-7 
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Figure 8.5-7: Bearing 1 Signal 1 Feature Plot: 200 Hz Peak Max Value Over Tests 

Looking at the feature extracted from the 200 Hz peak of Signal 1 it can be seen that the value 

does indeed decrease over the course of testing so there is some assurance that the FFT plots 

show accurate information. Since the value of the feature shows a strong decreasing trend over 

time, this feature might be useful in further model development.  

8.6 TASK 8: Degradation and Failure Data Collection 

In this section we discuss the collection of degradation and failure data for the neoprene impeller 

test bed, and perform a preliminary analysis on the first sets of failure data. The impellers were 

heated to 165 C in an air circulated oven for approximately 1.5 hours. This reduction in the aging 

temperature from that reported previously of 190 C was necessary so that the pumps could be run 

for longer periods of time, at an aging temperature of 190 C the impellers failed within several 

hours up to 2 days. At the new aging temperature, the impellers typically fail within 3-5 days. 

Again, failure in this experiment means that the pump is no longer able to draw any water from 

the common sump. Finally, before any aging of the impellers was performed, new, unheated 

impellers were placed in each of the four pumps in order to collect baseline data. This baseline 

data can then be used in the future for comparison and model development.  

For the initial data analysis, we will examine one of the pump data sets that show a clear 

indication of failure. The data is first cleaned using a median filter during discrete observation 

windows in order to remove any outliers and to de-noise the data.  The Root Mean Square (RMS) 

values for each signal are first examined, followed by examination of the Power Spectral 

Densities (PSD). Last, a Joint Time Frequency Spectrum (JTFS) will be shown for each of the 

vibration, differential pressure and current signals for this test. The total observations recorded for 
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this particular test were 1107968 and several regions of interest are seen in the raw data that 

correspond to where an impeller broke off during testing. Table 8-6 lists these regions of interest.  

Table 8-6 Degradation Regions for Accelerated Impeller Testing 

Degradation Region Observation Range 

1 1 : 6.529 e4 

2 6.530 e4 : 1.463 e5 

3 1.465 e5 : 4.054 e5 

4 4.056 e5 : 5.169 e5 

5 5.172 e5 : end 

 

In Table 8-6Error! Reference source not found., regions 1-4 correspond to increasing 

degradation of the impeller with the pump still operational during these periods. In region 5, all of 

the impeller blades had broken off from the main impeller body and the pump was unable to draw 

any water from the common sump, which constitutes a failure. Next, Figure 8.6-1 shows the 

cleaned vibration, differential pressure and current signals for this test. 
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Figure 8.6-1: Cleaned Data for Various Signals of Pump 1 
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In Figure 8.6-1, the decreasing magnitudes of each of the signals correspond to one or more of the 

impellers breaking off until failure, which corresponds to the observation range of 5.2 e5 until the 

end of the recorded data. Next, Figure 8.6-2 shows the RMS values for each of these signals. 

These RMS values were calculated by using 541 windows and each window had 2048 data 

observations.  
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Figure 8.6-2 RMS Values for Various Signals of Pump 1 

The degradation regions listed in Table 8-6 can also be clearly seen in the RMS values of the 

current data plot shown in Figure 8.6-2. Next, the PSD plots for the first four degradation regions 

of the vibration signal are shown in Figure 8.6-3. 
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Figure 8.6-3 PSD Plots for Degradation Regions of Vibration Signal 

The PSD for the first region is quite noisy; this was seen in all the pump data for this particular 

test. In region 2 there is a distinct peak around 120 Hz and at 420 Hz. The 120 Hz peak is seen in 

regions 2 & 3, while the 420 Hz peak disappears. Next, the PSD plots for each of the degradation 

regions for the current signal are shown in Figure 8.6-4. 
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Figure 8.6-4: PSD Plots for Degradation Regions of Current Signal 
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In Figure 8.6-4, there are two noticeable peaks near 60 and 120 Hz and the magnitudes of the 120 

Hz peak decreases during each region due to the fact that the pump is drawing less current as 

more impellers break off. The last PSD plots shown are for the differential pressure signal, which 

is shown in Figure 8.6-5. 
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Figure 8.6-5: PSD Plots for Degradation Regions of Differential Pressure Signal 

The PSD plots for the differential pressure don't show much change during each region. This is 

expected since this type of signal is not frequency based as the vibration or current signals are. 

Finally, JTFS plots are shown for the vibration and current signals. The differential pressure was 

not included in the JTFS plot because this signal did not contain any useful visible information. 

The JTFS plots contain the first four of the degradation regions as the final region contains little 

useful information since the pump has failed and is not drawing any water from the sump. Figure 

8.6-6 shows the JTFS plot for the vibration signal. 
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Figure 8.6-6: JTFS Plot for Vibration Signal 

In Figure 8.6-6, the 50 Hz frequency grows as the test continues and shows a noticeable 

frequency at 120 Hz. The frequency at 360 Hz also appears to grow in magnitude to about 450 Hz 

until observation window 150, where it then lowers in magnitude to about 400 Hz. The last JTFS 

plot is shown for the current signal in Figure 8.6-7. 

 

Figure 8.6-7: JTFS Plot for Current Signal 

In Figure 8.6-7, there is a dominant frequency at 50 Hz that stays constant in magnitude 

throughout the test; this was seen in the PSD plots for this signal as well. Finally, the 120 Hz 
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frequency decreases in density as the test continues, which indicates that this frequency 

component is not as strong when all the impellers break off. 

Summary and Conclusions: 

In summary, the thermal aging temperature for the neoprene impellers has been reduced from 190 

C to 165 C to ensure that adequate amounts of data can be collected. It was found that aging the 

impellers at 190 C caused the impellers to become too stiff and result in tests that last for only 

several hours to a day. Using a temperature of 165 C, it has been found that the testing can be 

performed continuously for 3-5 days. All four of the pumps on the test bed were used to test the 

impellers. Data analysis was performed on the data collected from one of the pumps and 

examination of the raw data for each of the monitored signals shows a clear indication of when an 

impeller blade broke off. The RMS values for each of the signals were also calculated and show 

indications of change in magnitude during each of the listed degradation regions. The PSD plots 

for the vibration and current signals show a change in the magnitude of certain peaks as the 

testing progressed, which means that the degradation can be tracked through time. Finally, JTFS 

plots for the vibration and current signals shows frequency components, namely 50-60, 120 and 

360 Hz, show changes in density as the testing progresses.  
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9. Task 9: Use Algorithms to Develop Lifecycle Models 
Any tool or algorithm, no matter how well thought out and mathematically based, should 

ultimately be tested on actual systems data in order to evaluate is usefulness and practicality. Data 

collected from both the on-site University of Tennessee experimental test beds and from the 

various test beds from the off-site project were used to verify the developed tools and algorithms 

of this project. The data analysis focuses on both the algorithms and tools developed during this 

project, and techniques previously established by industry and academia to be useful in the 

extraction of diagnostic and prognostic information. These additional techniques and analysis will 

serve as a benchmark allowing for a quantitative comparison with any tools developed in this 

project and ensuring that all technologies are state of the art. Independent analyses of the data, as 

well as models developed directly with tools developed in this project are used to highlight the 

usefulness and effectiveness of the developed algorithms. These results are presented in this 

section. 

9.1 Analysis of Accelerated Motor Aging Data 

This task describes the steps taken in analyzing the degraded motor data in the time and 

frequency domain. The data processing involves extracting useful features from the raw signals 

and using these features to develop prognostic models. Selecting appropriate features is an 

important factor when developing prognostic parameters, models and RUL estimations. Gathered 

signals from machine components generally contain large samples of data which require a large 

amount of memory and computation time to be analyzed. Instead, this data can be reduced into a 

lower but informative representation by extracting meaningful features from raw signals. The 

following section briefly describes the motor degradation experiment and data collection, as well 

as the monitored signals. Sections 9.1.2 and 9.1.3 describe the steps used to extract features from 

the data in the time and frequency domain. Section 9.1.4 describes the methods used to develop 

the prognostic parameter by use of the genetic algorithm found in the PEP toolbox and by 

Ordinary Least Squares (OLS) regression. Also included in this section is a reporting of the 

prognostic model results developed by using the extracted time and frequency domain features. 

9.1.1 Experiment & Data Description 

The data used during this research was steady-state data from a motor degradation project funded 

by EPRI. In the project, a group of ten 5 HP 3-phase motors were run through a degradation cycle 

on a weekly basis. First, the motors were heated for 3 days in an oven. The motors were separated 

into two different groups for heating degradation. One group, motors 1-7, was heated at 160 
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degrees C, while the other group, motors 8-10, was heated at 140 degrees C. After the first 

heating cycle, the motors were placed in a moisture testing bed with high humidity for further 

degradation. Then the motors were allowed to cool for a few hours before being placed in the 

second heating cycle for 3 additional days. 

After the second heating cycle, the motors were placed on a testing bed and run for one hour. Five 

two-second transient startup tests were taken, including four loaded tests and one unloaded test.  

The steady-state data was collected every 15 minutes for one hour per motor. The following 

thirteen variables were monitored during this test at a sampling rate of 10240 Hz: 

 Motor Current (3 phases) 

 Motor Voltage (3 phases) 

 X & Y Direction Accelerometer 

 Microphone 

 Tachometer 

 Temperature 

 Output Current (Generator) 

 Output Voltage (Generator) 

The data used in this research study was from five of the motors, which are numbers 2, 3, 5, 6 and 

7, because these motors all present similar degradation due to bearings failures. Once the new set 

of motors being degraded shows evidence of failures then the same process will be applied to 

those motor data sets for model comparison. Next we will discuss how to extract features from 

the time and frequency domains. 

9.1.2 Feature Extraction: Time Domain 

Feature extraction from the time domain data is shown in this section, and the usefulness of the 

extracted features is examined. A usable feature would be one that shows a definite trend over the 

course of testing. This trend can be the magnitude of the feature value either increasing or 

decreasing over time. Less useful features are those that do not shown a trend over time. Several 

useful features have been extracted using statistical moments applied to the considered data and 

examining any trend over the entire lifetime of the tests for each motor. The most common 

statistical moments used in practice are the mean, standard deviation, root mean square (RMS), 

skewness and kurtosis. The mean value simply represents the average value of an observation 
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range, and it is obtained by dividing the sum of observed values by the number of observations, 

as shown in               Equation 9-1: 

1

1 n

ii
x x

n 
                 Equation 9-1 

            

The standard deviation gives an idea of how close the entire set of data is to the average value and 

is given in    Equation 9-2 as: 
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      Equation 9-2 

 

where x is defined as the mean value. 

The RMS, also known as the quadratic mean, is a statistical measure of the magnitude of a 

varying quantity. The RMS value of a set of values is the square root of the arithmetic mean of 

the squares of the original values. The skewness is a measure of the asymmetry of the data around 

the sample mean. If the skewness value is negative, the data are spread out more to the left of the 

mean than to the right. If the skewness is positive, the data are spread out more to the right. The 

skewness is defined in                 Equation 9-3:  
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where x is defined as the mean value and  is defined as the standard deviation. 

Kurtosis is a measure of the "peakedness" of a distribution, often termed the fourth statistical 

moment, and it is defined by                   Equation 9-4 as:  
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where x is defined as the mean value and  is defined as the standard deviation. 

These moments were used to analyze the steady state motor data and one value of each moment 

was calculated for each motor test. For example, motor 2 had 108 total tests so the features of 
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motor 2 all contain 108 data points. In this way the size of the data is reduced and hidden trends 

in the data over the lifetime of the motor can be observed. It is important to note that the trend has 

to be well defined, such as an increase in the feature value over time, and similar trends must be 

present in each motor to be considered useful. Some statistical features did not present a clear 

trend over time and they have not been considered as useful features to generate the prognostic 

parameters. If the trend over tests is not clear, the prognostic parameters generated will not have 

similar trends and the GPM model will give poor RUL estimation. Table 9-1 lists the time series 

features considered during the course of this research that showed a trend over time. 

Table 9-1 Time Series Statistical Features 

1 RMS Current 1 9 Kurtosis  Current 3 

2 RMS Current 2 10 Kurtosis Voltage 1 

3 RMS Current 3 11 Kurtosis Voltage 2 

4 RMS Voltage 1 12 Kurtosis Voltage 3 

5 RMS Voltage 2 13 Kurtosis  Current Output 

6 RMS Voltage 3 14 Kurtosis Voltage Output 

7 Kurtosis Current 1 15 RMS Vibration-X 

8 Kurtosis Current 2 16 RMS Vibration-Y 

 

Looking at Table 9-1, it can be seen that the majority of the signals that showed any real trend 

over the course of testing were the current and voltage signals. This result makes sense because 

the degradation testing causes shorts and surges in these signals and thus would show in the 

signals as something wrong with the system. The vibration signals only had two usable features in 

the time domain but as will be seen later, the vibration signals had more useful information in the 

frequency domain. An example of a set of features that is not considered usable is shown in 

Figure 9.1-1, which is the mean of the current signals over time for Motor 2.  



146 
 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-4

Time (Cycles)

F
ea

tu
re

 V
al

ue

Mean of Current Signals

 

 

 

Figure 9.1-1: Unusable Features from Current Signals 

The features shown in the figure are unusable due to the fact that there is no clear 

increasing/decreasing trend. The plots can in general be considered constant over time. Constant 

valued features provided no useful information and the prognostic parameters generated from 

such features would not give reliable estimates of RUL. Another example of a feature that is not 

useful for prognostic parameter generation is shown in the figure below, which shows the 

skewness values of the voltage signals in Motor 2 over time. 
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Figure 9.1-2: Unusable Features from Voltage Signals 
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Besides the large spike in the red plot shown in the figure, there is again no observable trend in 

the data; the skewness values are generally constant over the course of testing. An example of a 

usable feature is shown in Figure 9.1-3, the RMS of the voltage signals in Motor 2 over the 

course of testing. 

0 20 40 60 80 100 120
1

1.5

2

2.5

3

3.5

Time (Cycles)

F
ea

tu
re

 V
al

ue

RMS of Voltage Signals

 

Figure 9.1-3: Usable Features, RMS Values for Voltage Signals 

The bearings in the figure all show a general increase in value over time and were considered a 

usable set of features. Another example of a useful feature is shown in Figure 9.1-4, which are the 

kurtosis values of the voltage signals in Motor 2 over time.  
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Figure 9.1-4: Usable Features, Kurtosis Values for Voltage Signals 

In this case, the values shown in the figure all show a decreasing trend over the course of testing, 

and thus kurtosis was included as a useful feature. To remove large spikes in the data and features 

in order to clarify the underlying trend, a band reject filter that eliminates the 60 Hz component 

has been applied to the original signals. This filter was applied because the 60 Hz component can 

dominate the behavior of the sampled data and hide trends in the data. The filtering process 

involves taking the FFT of the signal, removing the data corresponding to the 60 Hz values and 

then inverting the FFT to obtain the time series signal. Care must be taken because the inversion 

of the FFT can introduce anomalies at the beginning and end of the de-noised signal and should 

not be considered as trends or a feature in the data. In Figure 9.1-5 the RMS values for the 

voltage signals of Motor 5 are shown, without the band pass filter applied.  
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Figure 9.1-5: RMS of Voltage Signals, No Band-Pass Filter 

It can be seen in the figure that there is no clear trend over time and the RMS is likely not a 

usable feature. However, applying the band pass filter to the signals and taking the RMS values 

results in an observable trend, which is shown in Figure 9.1-6.  
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Figure 9.1-6: RMS of Voltage Signals, Band Pass Filter Applied 
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The same band pass filter was applied to the motors of interest and each of the time series 

features were generated by using this filtering method. As shown in Table 1, 16 usable features 

were extracted from the motor data sets. These features can be used alone or in combination with 

the frequency domain generated features. Incorporation of these features into the prognostic 

model will be shown later. Next the methods used to extract useful features in the frequency 

domain are discussed.  

9.1.3 Feature Extraction: Frequency Domain 

Generation of useful features in the frequency domain is described in this section. Frequency 

domain analysis is based on transforming the time series signal into the frequency domain. The 

main advantage of frequency domain analysis over time domain analysis is its ability to identify 

and isolate certain frequency components of interest. Features extracted from the frequency 

domain can generally indicate machinery faults better than time domain features, especially in the 

case of vibration signals, because characteristic frequency components such as resonance 

frequency components or defect frequency components can be relatively easily detected and 

matched to faults [McInerny & Dai]. Frequency domain or spectral analysis of the vibration 

signals is perhaps the most widely used approach to bearing defect detection. The modern Fast 

Fourier Transform (FFT), Equation 9-5, is the most conventional diagnosis technique and has 

been widely used to identify the frequency features of signals. 

The FFT for a discrete data series is defined as: 

 
( 1)( 1)

1

i kn

ii N
X k x

 


   Equation 9-5 

where ( 2 ) / N
N e    is an Nth root of unity. 

In this research, the FFT has been applied to extract features from the two vibration signals, 

which typically contain useful bearing failure information. Features have been obtained by 

measuring a certain peak value in the frequency spectrum for each motor and by calculating the 

RMS values in the frequency domain over a specific frequency band of the frequency spectrum. 

For example, the RMS values are calculated in the band containing bearing fault frequency 

information [Li et el]. The ball pass frequencies of the bearing are used for peak tracking in the 

frequency domain and occur at the frequencies listed below: 

 Ball pass frequency of the inner race [325 Hz] 

 Ball pass frequency of the outer race [215 Hz] 
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 General ball pass frequency [283 Hz] 

The current and voltage signals did not contain any useful information in the frequency domain, 

and these signals were not considered during the frequency domain analysis. Figure 9.1-7 shows 

the features extracted from the X-direction vibration signal of Motor 7, which tracks the peak 

values of the aforementioned bearing fault frequencies. 
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Figure 9.1-7: Peak Tracking of Bearing Fault Frequencies, X-Direction Vibration 

The features in the figure show that as the testing progress, the energy contained in each of the 

bearing fault peaks increases. This clear increasing trend is considered a useful feature of the 

frequency domain data. Another example of the trend in the bearing fault frequencies is shown in 

Figure 9.1-8, which is the bearing peak values for the Y-direction vibration of Motor 2 tracked 

over testing.  
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Figure 9.1-8: Peak Tracking of Bearing Fault Frequencies, Y-Direction Vibration 

As shown in the figure, the peak values of the bearing fault frequencies all increase in value over 

time. To show that these features are the same basic shape for each motor tested; Figure 9.1-9 

shows the peak tracked features for the Y-direction vibration for all other motors. 
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Figure 9.1-9: Peak Tracking, Y-Direction Vibration 
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It can be seen in the figure that except for Motor 7, all other features show an increasing value as 

testing progresses. Although Motor 7 did not have a strong change over time, it was still included 

in the analysis for completeness. 

The next features that have been extracted from the frequency data involve taking the RMS 

values over a frequency range and tracking the value through all tests. As the three bearing faults 

show frequencies in the range of 215-325 Hz, the RMS values in the X & Y vibration FFT data 

for Motor 2 have been calculated for this range and are shown in Figure 9.1-10. 
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Figure 9.1-10: RMS Values of X & Y Vibration, Frequency Range of 215-325 Hz 

The figure shows that the RMS values of the two vibration signals show an increasing trend over 

time, but the X-direction trend, shown in blue, is much more pronounced. This trend indicates 

that the feature might be useful for modeling and prognostic parameter generation. Next, the 

RMS values over the same frequency range for the other motors are calculated to see if the same 

trend appears. The results are shown in Figure 9.1-11. 
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Figure 9.1-11: RMS of Frequency Band, Vibration Signals of Remaining Motors 

Looking at the previous figure, it can be seen that the remaining motors all follow a trend in the 

RMS values calculated in the frequency band. The X-direction vibration feature, shown in blue, 

has the strongest trend for all motors, while the Y-direction, shown in green, is not as well 

defined, though it may still be useful for modeling. Hence, in addition to the 16 time domain 

features, an additional 8 features have been extracted from the vibration signals in the frequency 

domain. These new features are listed as follows: 

 Features 17 to 19 were extracted by peak tracking ball pass frequencies, X-direction 

vibration 

 Features 20 to 22 were extracted by peak tracking ball pass frequencies, Y-direction 

vibration 

 Features 23 and 24 were extracted by taking RMS values over frequency values of 

bearing fault band [215-325 Hz] 

 

To summarize this section, the steady state data collected during the motor degradation 

experiment was analyzed in the time and frequency domain to extract useful features for 

prognostic parameter and model development. The signals consisted of current, voltage, 

vibration, tachometer measurements of the motor, and the output current and voltage of the 

generator. Only the tachometer signal was found to be unusable during the analysis, while the 
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other signals had interesting features in the time and frequency domain. The majority of this 

analysis focused on extracting features from the raw signal. In the time domain, the RMS and 

kurtosis values for the current, voltage and vibration signals showed interesting trends over time 

and were considered for further analysis. The mean and skewness values for these and other 

signals were fairly constant in value as testing progressed and were not usable in the development 

of prognostic models.  

In the frequency domain, the bearing inner and outer race frequency, as well as the general ball 

pass frequency, were tracked over time. These peaks occur at 325, 215, and 283 Hz, respectively. 

The simple peak tracking analysis involved storing the maximum power value of each of the 

bearing frequencies in a small band. For example, the inner race peak was tracked from 320-330 

Hz and the maximum value in this small frequency range was stored. Both the vibration signals 

showed increasing trends in these values as testing progressed. Another useful feature extraction 

method involves taking the RMS values of the entire bearing frequency and tracking these values 

over time. For this analysis, the band from 215-325 Hz was used, and trends were seen in the 

features that were considered useful for further modeling. The current and voltage signals of the 

motor and generator did not show any usable feature trends when analyzed in the frequency 

domain, as the power in the frequency did not change dramatically. 

9.1.4 Modeling and Prognostic Parameter Development 

In this section, Genetic Algorithm (GA) and Ordinary Least Squares (OLS) estimation techniques 

were used to develop suitable prognostic parameters from the selected motor features. The 

generated prognostic parameters can then be used to develop the General Path Model (GPM) and 

obtain predictions of RUL. The GPM is constructed for the GA and OLS cases, and the 

"Prediction Metrics" function will be used to offer quantitative results for prognostic models 

developed using the parameters. The prognostic parameters, failure times, and developed models 

will be used in future work to obtain RUL predictions for the current motors being tested and to 

validate performance of the algorithms developed during this course of research.  

Genetic Algorithm Approach for Prognostic Parameter Generation  

The PEP toolbox's "optparam" function uses genetic algorithms that are contained in the 

MATLAB Global Optimization Toolbox® that theoretically generates a near-ideal prognostic 

parameter from the features shown in the previous section. The genetic algorithm is a unique 

optimization method that uses natural selection rules similar to those discovered in biology to 

arrive at an optimal solution to problems that may be constrained or unconstrained. The algorithm 
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randomly chooses "parents" from the data source to create "children" in successive iterations. 

This selection process is performed iteratively to potentially arrive at an optimal solution of the 

problem. More information on genetic algorithms can be found in the help sections in the 

MATLAB toolbox and in [Haupt & Haupt, 2004]. Recall that a prognostic parameter must ideally 

have three characteristics that are defined as monotonicity, prognosability and trendability [Coble 

2010]. Monotonicity helps to characterize the positive or negative trend of the parameter; 

trendability helps to show if the parameter or parameters in the population can be fitted to a 

similar underlying functional form; finally, prognosability characterizes failure value spread in 

relation to the parameter pathway. Each parameter metric is assigned a value between 0 and 1, 

where an ideal or perfect parameter has a value close to or at 1. 

The "optparam" function arrives at an optimized prognostic parameter by using a fitness function 

that sums the three parameter characteristics, with an optional weighting for each characteristic. 

The default in the function is to arrive at linear combinations of the three characteristics from 

various data sources using a fitness function of the form:  

lityprognosabiwtytrendabiliwtymonotoniciwfitness ptm 
        

Equation 9-6 

Each of the weights for the performance metrics in the preceding equation is initially set as [1 1 

1] such that equal importance is given to each of the three metrics. Optparam uses this fitness 

function to find optimal weights for a linear combination of extracted features supplied to it. This 

optimally weighted linear combination of features can then be used as the prognostic parameter, 

indicative of the system degradation, and useful for creating Type III condition-based prognostic 

models. 

For validation purposes during the model development, the "leave one out" method was used. 

This term means that the linear combination weighting values generated from the optparam 

function were calculated for 4 of the motors while leaving the data source for 1 of the motors out. 

The generated weights are then multiplied by the removed motor data to create prognostic 

predictions from the generated model. Ideally, the prognostic parameter of the left-out data source 

should have the same shape as the other four generated parameters. 

The main problem that can be encountered using the genetic algorithm approach is that during the 

optimization process the genetic algorithm can become stuck in a local minimum point and not 

reach the global minimum point of the error surface. This means that the generated weights are 

not guaranteed to be absolutely optimal. Also, given the random starting points of the genetic 
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algorithm, each run of the program can result in different optimized weights from the same data 

sources. Finally, if using large data sources with many features, the genetic algorithm can be 

computationally intensive. In this research the genetic algorithm method was investigated but 

ultimately not used due to the fact that the OLS method explained in the next section offered 

better end results. Both methods are available for use in the diagnostic/prognostic toolbox 

developed. The same models were developed using both methods for comparison.  

Ordinary Least Squares Approach for Prognostic Parameter Generation 

Another method that was investigated to arrive at a near-ideal prognostic parameter is to use OLS 

estimation. In this method, "X" is defined to be a matrix of the features for each of the 5 motors 

that were investigated. Each column in the matrix is the same feature from each of the 5 motors, 

resulting in a 537 x 16 matrix. Hence, 537 data points were collectively extracted from each of 

the 5 motors, and 16 features were investigated. Matrix "Y" is defined as a time matrix that is 

scaled between 0 and 1 for each motor. The "leave one out" validation method is also employed 

here to validate that the resulting prognostic parameter of the left-out motor has the same general 

shape and metric values as the other 4 motors. Once the X and Y matrices are defined, the 

resulting weights can be found by: 

YXXXpinvw TT )(
         Equation 9-7 

Multiplying the resulting weights by X, the prognostic parameter is obtained. This method was 

preferred because the computation time is very short compared to genetic algorithms, and the 

prognostic models had better performance when using the OLS method. It is also noted that 

mean, median and exponential filters were also applied to these prognostic parameters to 

investigate if filtering had any effect on the final model results. As an example of what the 

resulting prognostic parameter looks like, Figure 9.1-12 shows the resulting parameter using the 

OLS method and using different combinations of features.  
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Figure 9.1-12: OLS Prognostic Parameters Using Different Features 

Looking at the figure, it can be seen that the shape of the prognostic parameter changes 

depending on what features are used. The general trend of these parameters is linear in functional 

form so a linear GPM can be built with these parameters. Once the prognostic parameters are 

developed, the GPM could be constructed and RUL predictions made. As a further example, the 

results for the three prognostic metrics are shown in Table 9-2 for both the OLS and GA methods 

using several combinations of features. 

Table 9-2 Prognostic Parameter Results for OLS & GA 

MOTOR #2 OLS GA 

Selected 

Features 

M P T M P T 

[1;16] 0.83 0.84 0.88 0.90 0.91 0.85

[1;14] 0.83 0.87 0.84 0.90 0.97 0.82

[1;6] 0.67 0.83 0.65 0.90 0.86 0.68

[1;9] 0.83 0.88 0.84 0.83 0.98 0.82

[7;14] 0.83 0.93 0.61 0.90 0.89 0.79
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[1 4 5 6 9 12] 0.67 0.81 0.64 0.83 0.89 0.71

[1 4 5 6 9 12 13 14] 0.67 0.91 0.80 0.83 0.91 0.71

[17;22] 0.67 0.76 0.55 0.83 0.80 0.79

[17;24] 0.67 0.72 0.65 0.83 0.98 0.59

[1;14 17;24] 0.83 0.85 0.85 0.90 0.99 0.85

[1;24] 0.83 0.85 0.86 0.91 0.99 0.89

 

Looking at the table, it can be seen that the GA results are slightly better than the OLS method. It 

should be noted that the GA results are not as constant as the OLS results. By the random nature 

of the GA process, the prognostics metrics will be slightly different each time the process is run. 

Next are shown the results for each of the prognostic models developed that use prognostic 

parameters generated from several different combinations of the 24 features. The GA and OLS 

results are compared to see which offers the best predictive model and performance. 

9.1.5 Prognostic Model Results 

In this section the prognostic model results when using the various 24 features extracted from the 

steady state motor data are shown. The prognostic parameters were developed from the GA and 

OLS method so comparisons could be made as to which method gave the best prognostic model 

performance. A linear GPM model was chosen for the current work as the resulting prognostic 

parameters followed this basic trend, though a quadratic, cubic or exponential model could also 

be developed if the parameters show those types of trends. After the GPM is run using PEP 

toolbox functions, the RUL and time predictions are saved so that comparisons of model results 

when using various combinations of features could be examined.  

To compare the performance of the various prognostic models, the "Prediction Metrics" function 

[Sharp 2013] is used, which uses the RUL and time predictions and the actual Time of Failure 

(ToF) to quantify model performance. The function outputs several scores based on the inputs 

and are: 

 Aggregate Score (%) – gives an overall performance of the prognostic model based on 
error, uncertainty and coverage metrics. A score of 100% is considered perfect 
prediction while a score under 50% is an undesirable model. 

 MAE – gives the mean absolute error and standard deviation of all cases of supplied 
input. A small error and deviation is desired 
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 WEB (%) – gives the Weighted Error Bias in percentage, a measure of the bias, positive 
or negative, of the model predictions. A small bias percentage throughout prediction 
time is desired. 

 WPS (%) – gives the Weighted Prediction Spread in percentage, a measure of how much 
the predictions are spread. A small percentage spread is required. 

 95% C.I. Coverage (%) – a measure of the 95% Confidence Interval Coverage, or the 
percent of time that the estimated prediction covers the true RUL. The metric should 
ideally be at 95% or above. 

 10 % RUL C.H. (%) – a measure of the percentage of RUL where prediction uncertainty 
covers the true RUL and is less than a specified tolerance level. A value close the 10% 
level is preferred. 

 

All the metrics listed contribute to the aggregate score of the model, and the results are dependent 

on the user input. Features that are well chosen and defined will lead to prognostic parameters 

with higher metric values and thus better RUL predictions. The function also gives these metrics 

in a graphical format. 

The first results shown are for prognostic models developed using parameters generated from 

various combinations of features. Table 9-3 shows the results of the models when all or any 

combination of features is used for the OLS method. Table 9-4 will show the prognostic model 

results when all or combinations of features are used for the GA method. The entries highlighted 

represent the models with the best performance. 

Table 9-3 : Prognostic Model Results Using OLS Method 

Ordinary Least Squares Estimation Approach 

Features 

selected 

Aggregate 

score 

MAE 
WEB 

[%] 

WPS 

[%] 

Confidence 

interval 

coverage 

[%] 

Convergence 

Horizon 

[%]RUL 

[1;16] 68.76 4.99+/-4.10 -1.02 23.95 100 0 

[1;14] 68.26 6.02+/-4.14 -1.78 25.17 100 0 

[1;6] 68.13 5.51+/-2.16 -2.16 20.56 95.2 0 

[1;9] 68.59 5.51+/-2.16 -0.90 24.75 100 0 



161 
 

[7;14] 66.79 11.37+/-2.76 -4.75 28.09 100 0 

[1 4 5 6 9 12] 66.95 9.45+/-3.49 -3.39 28.79 100 0 

[1 4 5 6 9 12 

13 14] 

65.12 10.44+/-5.99 -3.19 36.34 100 0 

[17;22] 64.65 10.34+/-7.36 -4.43 36.98 100 0 

[17;24] 67.35 8.29+/-2.96 2.19 28.40 100 0 

[1;14 17;24] 70.58 3.71+/-0.78 1.63 16.06 100 0 

[1;24] 71.06 3.49+/-1.78 -0.32 15.46 100 0 

 

Looking at the table, it can be seen that the model that performed the best in the OLS used all of 

the 24 features extracted from the time and frequency domains. This model had the best overall 

aggregate score and the least amount of error in the RUL predictions. The other models also 

performed well in that the difference in the MAE values and aggregate scores was at most 6% 

different for both metrics. Next, the GA prognostic model results are shown in Table 9-4. 

Table 9-4 Prognostic Model Results Using GA Method 

Genetic Algorithm Approach

Features 

selected 

Aggregate 

score 

MAE WEB

[%] 

WPS

[%] 

Confidence 

interval 

coverage 

[%] 

Convergence

Horizon 

[%]RUL 

[1;16] 61.79 21.65+/-9.13 -9.43 33.89 81 9.5 

[1;14] 62.11 18.43+/-11.87 0.23 51.32 100 0 

[1;6] 71.51 3.35+/-1.34 -1.19 12.78 90.5 9.5 



162 
 

[1;9] 56.39 22.78+/-12.27 6.09 68.36 100 0 

[7;14] 55.86 30.32+/-22.41 -2.44 64.59 90.5 0 

[1 4 5 6 9 12] 61.45 16.45+/-9.14 -4.26 35.36 85.7 0 

[1 4 5 6 9 12 13 14] 57.22 23.97+/-6.61 -2.49 54.35 85.7 0 

[17;22] 64.01 11.03+/-6.28 1.42 42.56 100 0 

[17;24] 65.95 9.96+/-5.81 1.35 34.87 100 0 

[1;14 17;24] 65.43 10.04+/-4.09 -4.62 24.12 90.5 0 

[1;24] 68.03 9.02+/-3.46 -1.95 25.91 100 0 

 

Looking at Table 9-4, it can be seen that the model that best performed used only the first six 

features from the time domain, which were the RMS values of the motor current and voltage 

signals. This model is also one of the few that were able to achieve a 10% RUL convergence 

horizon, while none of the OLS models reached this convergence. It is also interesting to note that 

the GA models had much higher MAE than the OLS models. The reason for this is again the 

random nature of the GA when developing the prognostic parameters. The parameters using the 

GA method were also noisier than the OLS parameters. Next the Performance Metrics function 

graphical output is examined for the best models for the OLS and GA cases. Figure 9.1-13 shows 

the output for the OLS case when all 24 features are used for RUL predictions. 
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Figure 9.1-13: Performance Metric Output for OLS Case of All 24 Features 

Looking at the figure, the blue line, which is the average RUL prediction, follows closely to the 

true RUL, shown using a red line. There is a slight deviation near the end of life, but this 

difference is not so large that RUL predictions cannot be made. The only problem with this model 

is that it did not reach the 10% convergence horizon, which is the green bar on the y-axis. To 

correct this issue, the prognostic parameters could be run through smoothing algorithms to change 

these results. Next is the GA model plot using all 24 features for comparison in Figure 9.1-14.  
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Figure 9.1-14: Performance Metric Plot for GA Method Using All Features 
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Looking at the figure for the GA results, the confidence intervals for the average RUL predictions 

seem very large from 0-40% of life consumed. This effect is due to the noisier prognostic 

parameters generated by the GA and is typically not seen as a problem because the large 

deviation in the RUL predictions occurs at the start of life and not at the end of life, which is 

normal. This model also had a lower aggregate score than the OLS model and had a MAE almost 

7% larger, and this model did not reach the 10% RUL convergence horizon. The best GA model 

used only the first six features in the time domain, which were the RMS values of the current and 

voltage signals. Figure 9.1-15 shows these results. 
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Figure 9.1-15: Best GA Model Using First 6 Features 

The first thing to notice about the figure is that the deviation in the confidence intervals of the 

predicted RUL is quite large at 10-40% of life consumed, as in the previous figure. This large 

spread is due to how the GA generates the prognostic parameter, which is usually noisier than the 

OLS parameters. This model had a lower aggregate score and very high MAE than the OLS 

models. Again, further smoothing of the prognostic parameters before they are used in the GPM 

can result in better predictions for RUL. The OLS method produced better prognostic models 

than by using the GA method since the GA models had large MAE scores and lower aggregate 

scores.  

Lastly the effect that occurs when more data points are used when extracting the features for 

prognostic parameter development was examined. As initially only 1 data point was used in the 

feature extraction process per motor test, 4 and 10 data points were also examined to see if there 
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was any great change in model results. Table 9-5 shows the results for the OSL method when 4 

data points are used, with the original values shown for comparison. As the GA models generally 

had poorer results than the OLS models. Only the OLS models were considered when using more 

data points for feature extraction. 

Table 9-5 Effect of Using More Data in Feature Extraction 

1-Data Point in Features Extraction 

Features 

selected 

Aggregate 

score 

MAE 
WEB 

[%] 

WPS 

[%] 

Confidence 

interval 

coverage 

[%] 

Convergence 

Horizon 

[%]RUL 

[1;16] 68.76 4.99+/-4.10 -1.02 23.95 100 0 

[1;14] 68.26 6.02+/-4.14 -1.78 25.17 100 0 

[1;6] 68.13 5.51+/-2.16 -2.16 20.56 95.2 0 

[7;14] 66.79 11.37+/-2.76 -4.75 28.09 100 0 

[1 4 5 6 9 12] 66.95 9.45+/-3.49 -3.39 28.79 100 0 

4-Data Points in Features Extraction 

Features 

selected 

Aggregate 

score 

MAE 
WEB 

[%] 

WPS 

[%] 

Confidence 

interval 

coverage 

[%] 

Convergence 

Horizon 

[%]RUL 

[1:16] 68.14 33.07+/-15.43 -2.70 24.72 100 0 

[1:14] 70.64 36.48+/-17.12 -5.20 21.77 100 9.5 

[1:6] 61.08 35.35+/-10.55 -5.65 16.68 66.7 0 

[7:14] 62.16 69.87+/-10.11 -2.31 49.07 100 0 
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[1 4 5 6 9 12] 62.02 55.13+/-14.54 -4.72 32.93 85.7 0 

 

The first thing to notice in the table is that the model built using features 1-14 has a higher 

aggregate score than the original results and is able to converge to the 10% RUL convergence 

coverage horizon. However, the MAE for this model and all other models developed by using 

four data points in feature selection have nearly a 30-58% increase when compared with the 

previous models. It can be concluded from this method that using more data points when 

extracting the features does not offer better prediction models in general. This effect is seen in the 

models built using features 1-16; the OLS model that used only one data points in feature 

extraction had nearly the same metric values but roughly 30% less MAE. Figure 9.1-16 shows the 

prognostic model outputs for the OLS model that used features 1-14 with four data points for 

each test. 
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Figure 9.1-16: Performance Metric Plot Output Using 4 Data Points in Feature Extraction 

It can be seen that the same problems of the prediction coverage and confidence intervals from 

20-40% of life consumed occur. This model outperforms the previous OLS model in that the 

aggregate score is slightly higher and this model is able to converge at the 10% RUL convergence 

horizon, but the very high MAE value of the model is not desirable because of the larger error in 

the predictions. Table 9-6 shows a comparison of the model results in terms of performance 

metrics, obtained by applying the Ordinary Least Square Estimation to generate the prognostic 

parameters for the different combinations of features with ten and one data points for each test. 
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Table 9-6 Prognostic Model Outputs Using 10 Data Points in Feature Extraction 

1-Data Point in Features Extraction 

Features 

selected 

Aggregate 

score 

MAE 
WEB 

[%] 

WPS 

[%] 

Confidence 

interval 

coverage 

[%] 

Convergence 

Horizon 

[%]RUL 

[1;16] 68.76 4.99+/-4.10 -1.02 23.95 100 0 

[1;14] 68.26 6.02+/-4.14 -1.78 25.17 100 0 

[1;6] 68.13 5.51+/-2.16 -2.16 20.56 95.2 0 

[7;14] 66.79 11.37+/-2.76 -4.75 28.09 100 0 

[1 4 5 6 9 12] 66.95 9.45+/-3.49 -3.39 28.79 100 0 

10-Data Points in Features Extraction 

Features 

selected 

Aggregate 

score 

MAE 
WEB 

[%] 

WPS 

[%] 

Confidence 

interval 

coverage 

[%] 

Convergence 

Horizon 

[%]RUL 

[1:16] 67.09 117.16+/-50.84 -2.06 29.56 100 0 

[1:14] 65.44 138.86+/-56.99 -4.82 28.64 95.2 0 

[1:6] 59.81 132.87+/-39.36 -7.29 20.16 66.7 0 

[7:14] 46.53 187.15+/-91.23 11.01 102.88 100 0 

[1 4 5 6 9 12] 60.51 191.01+/-38.16 -6.59 32.32 81 0 

 

In the table the model using features 1-16 has the best aggregate score, but it is lower than 

original OLS models. The MAE values for the new models are worse than the model results 
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obtained using four data points for each test in features extraction. Furthermore, the MAE values 

are nearly 100-150 higher in value than the original models. Finally, Figure 9.1-17 shows the 

graphical output of the best OLS model obtained using features 1-16 with ten data points for each 

test to generate prognostic parameters. 
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Figure 9.1-17: OLS Model Results Using 10 Data Points for Feature Extraction, Features 1-
16 

Looking at the figure, it can be seen that the same problem of large deviations in the RUL 

predictions also occurs in this model. The other thing of note is the large 118% MAE metric. This 

error is too large to be considered useful, so only 1-4 data points were used in all models. 

9.2 Large Impeller Degradation Experiment 

In total there were 28 impellers tested during this experiment. Four of the tests were excluded due 

to external factors corrupting the test procedure, such as a power failure that rendered the pump 

unable to re-prime after some amount of testing. The work completed involved developing the 

three different prognostic model types using the pump failure data, which will be the focus of this 

current report. In the first subsection the results for the Type I model are shown, followed by the 

results for the Type II and Type III models.  

In each of the following subsections, the data and processing needed for each of the model types 

is shown. The end result of each of these models is to obtain RUL estimates for the system at a 

current time of operation or at a certain level of component degradation. Furthermore, the 

transition from the three different model types should also increase the accuracy of the RUL 
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estimates and reduce the associated uncertainty. All residual and model development was 

performed using the PEM and PEP toolboxes.  

9.2.1 Type I Prognostic Model Results 

There were a total of 28 impellers that were tested during the course of the experiment; four of 

these tests were omitted due to premature failures. Additionally, during model development 6 

more tests were excluded due to unusable features, this will be discussed more fully in the Type 

III model development section. There was a wide range of failures times for the remaining 18 

tests, from 1 to 33 days. In a Type I model, the only information that is used is the failure times 

for each of the tests, these are fitted to a distribution and RUL estimates for the current time of the 

system can be calculated. The first step in the analysis is to fit the failure time data to a 

distribution. This helps determine which model fit will work best for the supplied data. In Figure 

9.2-1 an exponential fit to the failure time data is shown. 
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Figure 9.2-1: Exponential Fit to Failure Time Data 

In the preceding figure, it can be seen that the majority of the failures occur between 1 to 15 days. 

This portion can be termed to have a fast failure mode. Beyond 15 days, the remaining units fail 

around 4-5 weeks, which is a second, slower failure mode. The next step is to develop several 

Type I models by using a leave one out cross validation method. This means that when the RUL 

estimates are made, one of the failure times is left out during model development. This process is 

looped until all failure times have been left out, this process results in 18 separate RUL estimates 

computed for various percentages of system life. These results are averaged along with the ToF 

and the Median Absolute Percent Error (MdAPE) is calculated for each percentage unit of life. 
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All Type I models developed used Weibull distributions. In Table 9-7 the MdAPE for the model 

ToF estimates is shown. 

Table 9-7: Type I Model ToF Estimates 

Model/% 
Life 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Type I 
Weibull  

 

62.3 63.6 56.3 54.4 64.1 76.2 88.2 100.1 111.8

 

In the table, the error begins to decrease, but after 40% of life the error begins to rise. Ideally, the 

error should be large at the start of life and decrease at the end of life. The reason the error 

increases is due to some outliers in the data from 24-33 days. All other failure times were from 

~1-15 days. Next, the development and results for the Type II prognostics model are shown. 

9.2.2 Type II Prognostic Model Results	

If the operating conditions for the system under consideration are known, then these conditions 

can be incorporated into a Type II prognostic model. For this research a Proportional Hazards 

Model (PHM) was chosen because the operating conditions simulated by closing the ball valve in 

the outlet line of each pump by different increments should be additive or multiplicative when 

compared to some baseline condition.  

For this type of model additional data is needed that is not required for a Type I model. This data 

also must be placed into a specific structure so that an accurate model can be developed. The first 

piece of information needed is the operating conditions of the experiment; in this case it is the 

different ball valve positions.  These are termed the covariates of the model and reflect how the 

different operating conditions stress the particular component in question. Next, the failure times 

are required, but these need to be separated into their respective operating condition. For 

example, all the tests that used the 100% open condition have their respective failure times and so 

on. The next data needed is the frequency of each of the failure times for each operating 

condition. In this data, the 100% condition had four failure times that lasted five days, so the 

frequency associated with the five day failure time is four. Finally, any test that needs to be 

censored or not is given a value of 1 or 0, respectively. 

Once all this data is collected, the PHM can be developed. The first step in development is to 

check if the reliability functions for each operating condition are proportional in some way. This 
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proportionality check is accomplished by taking the log of the negative log of the reliability 

functions. In Figure 9.2-1 the reliability function for each operating condition is shown in the left 

figure and the proportionality check is shown in the right figure. 

 

 

Figure 9.2-1: Type II Reliability Functions & Proportionality Check 

The reliability functions for the 100% and 50% open operating conditions show ideal 

proportionality while the 75% open operating condition is skewed at the start and later in life. The 

reason that the 75% condition is not as proportional to the other two can be attributed to the fact 

that this condition had several failures at 1 day and one failure at 33 days, while the majority of 

failures in the other two operating conditions were on average the same. Next, the same system 

times are used as in the Type I models to obtain RUL estimates and average uncertainty. In Table 

9-8 the MdAPE estimates for the PHM are shown along with the Type I models. 

Table 9-8: Type I & II Model ToF Estimates 

Model/% 

Life 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Type II PHM 84.83 71.88 62.82 52.38 41.67 29.45 25.54 16.29 7.84 

Type I 
Weibull 

62.3 63.6 56.3 54.4 64.1 76.2 88.2 100.1 111.8 
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In the table, the PHM error results perform as expected; they are large at the start of life and 

decrease to below 10% near the end of life. These results also demonstrate how the inclusion of 

additional information about the system can lead to better RUL predictions with a small amount 

of error.  

9.2.3 Type III Prognostic Model Results	

In this section the data processing needed for feature extraction, prognostic parameter generation 

and GPM development and results will be shown. This last type of prognostic model considers 

the stress or degradation that the component experiences over lifetime, and if this degradation can 

be tracked or measured then this information can be incorporated in the development of the GPM. 

The RUL estimates of this model use test degradation paths and extrapolate using a functional fit 

to some predetermined failure threshold. How long it takes to go from the end of the path to the 

threshold is the RUL for that component. The most difficult part of the Type III model 

development is the identification and combination of degradation paths that appear in most or all 

failure data. With this in mind, the first part of this section will focus on feature extraction 

methods examined in the time and frequency domain, as well as feature extraction from an 

AAKR model. Next, the prognostic parameter generation and suitability metrics are briefly 

discussed followed by the use of the failure and test prognostic parameters in the development of 

the GPM and RUL estimate results.  

9.2.3.1 Signal Feature Extraction Methods 

The first method of feature extraction is to calculate statistical measures of the raw signals. The 

measures included the mean, standard deviation, variance, skewness, kurtosis and Root Mean 

Square (RMS).  These calculations were performed in a windowed fashion, using the sampling 

frequency at 1024 Hz as the window length; this reduces the large amount of data into a single 

value for each recording period. The differential pressure signals for almost all tests showed good 

trends for several of the measures, while the vibration and current signal features were found to 

be unusable for all measures due to no useful trends. An example of the RMS values for the 

differential pressure signals for several tests is shown in Figure 9.2-2.  
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Figure 9.2-2: RMS Feature Extracted from Differential Pressure 

In the figure, the step changes in each plot indicate the point when one or more impeller blades 

had snapped off. This degradation decreases the pressure in the pump housing and is captured by 

the signal and feature. These features could be combined with others that show similar trends. 

However neither the vibration nor current features exhibited the trends shown in the figure. The 

next step is to examine these signals in the frequency to determine if any of the extracted features 

can be combined to form a useful degradation measure. 

In the frequency domain, the Fast Fourier Transform (FFT) was utilized as a feature extraction 

method. Each of the signals is windowed using the same window length of 1024 samples, and a 

FFT is calculated for each of these windows. The peak values for certain frequencies are then 

examined for the FFT of an unfailed window and compared against the FFT of a window before 

failure. The changes in the maximum peak values for each of the frequencies of interest are then 

tracked through the entire lifetime of the test. This method was performed on all tests and signals, 

but none of the frequency features showed any usable trend that could be combined with the time 

domain features.  

The last method to extract features from the raw data was to use an AAKR model and generate 

failure residuals. In this method, the first 1024 samples of each test are used as training data for 

that particular pump since none of the tests under consideration showed any degradation or 

failures at the start of testing. The rest of the dataset is then considered as failure data. This failure 

data will be used in the AAKR model and the residuals examined. An example of model failure 

residuals from one pump test is shown in Figure 9.2-3. 
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Figure 9.2-3: AAKR Model Failure Residuals Pump 2 Set 2 

In the figure, the green plot is the differential pressure signal residual and the red plot is the 

current signal failure residual. The vibration signal is also included but the residual value is very 

small and is covered by the current signal, this residual has the same trend as the current signal 

residual. The differential pressure residual has the same shape as seen in the time domain features 

and can be combined to form a prognostic parameter. Other methods of feature extraction were 

explored, including the Joint Time Frequency Spectrum and the Hilbert-Huang Transform; 

however these methods did not yield any usable features as those seen in the time domain or 

AAKR modeling. The next step is to combine the features into a prognostic parameter so that the 

GPM can be developed.  

9.2.3.2 General Path Model Development 

The prognostics parameters were developed using the time domain features. Development of the 

parameters was carried out by using a genetic algorithm optimization function; this is contained 

in the PEP toolbox and by use of OLS regression. Of the 24 total tests, only 18 were found 

suitable for use in modeling because many of the failure residuals were small in magnitude or did 

not show as noticeable trends as seen in the previous figure. As stated in previous reports, there 

are suitability metrics that are used for the generated prognostic parameters, which are 

monotonicity, prognosability and trendability. Monotonicity measures if the parameter is 

generally increasing or decreasing in value of time monotonically; prognosability measures how 
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useful the parameter will be for modeling; trendability measures how well the parameter can be 

fit to a functional form. All of these suitability metrics are measured from 0 to 1, with a value 

close to 1 being desirable. In Table 9-9 the metric values for the parameters generated using the 

GA and OLS are shown. 

Table 9-9: Performance Metric Values for Prognostic Parameters 

Metric G.A Parameters OLS Parameters 

Monotonicity .4547 .2654 

Prognosability .4738 .8674 

Trendability .2644 .0084 

 

In the table, the trendability metric for the OLS case is very low, this low value is due to the noise  

of the parameters, which is difficult to trend. The shape of the parameter also accounts for the 

average monotonicity values for both cases. Finally, the prognosability value for the OLS case is 

very high, due to the linear shape of the parameters. In contrast, the GA parameters have a step 

shape. In Figure 9.2-4 the GA parameters are shown. 
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Figure 9.2-4: Failure & Test Case Prognostic Parameters 
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In the figure, the GA parameters have a wide range of ending failure times as well as a wide 

range of degradation values. Since the resulting parameters are not usable in a GPM because of 

these wide ranges, the OLS parameters were developed and investigated. In Figure 9.2-5 the OLS 

parameters are shown. 
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Figure 9.2-5: OLS Prognostic Parameters 

The OLS parameters shown have in general a linear shape and were used for further model 

development. Since the OLS parameters have the same problems of large ending times and 

degradation values as the GA parameters, it was decided to set a soft failure threshold at .75 

degradation units or 75% failed. Any data after this threshold is removed because the pump is 

considered as operating in a failed condition. The failure times are then redefined as the end of 

these new cut parameters. The Type I and Type II models were developed and validated using 

these modified failure times. In Figure 9.2-6 the new modified OLS prognostic parameters are 

shown. 
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Figure 9.2-6: Soft Failure OLS Prognostic Parameters 

The new parameters shown in the figure still have a wide range of ending times, but now the 

majority of the degradation values fall between .5-.75, which will help reduce error during model 

development. Table 9-10 gives the MdAPE values for all models developed.  

Table 9-10: All Prognostics Model ToF Error 

Model/% 

Life 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Type III 

GPM 

57.31 51.07 45.22 38.02 31.50 24.29 18.17 10.94 5.25 

Type II PHM 84.83 71.88 62.82 52.38 41.67 29.45 25.54 16.29 7.84 

Type I Weibull 62.3 63.6 56.3 54.4 64.1 76.2 88.2 100.1 111.8

 

In the table, the error seen for the GPM is lower than the PHM. This model also behaves as 

expected by having large errors at the start of life and a low error near the end of life. Again, the 
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reduction in error demonstrates how the inclusion of degradation information can further refine 

the RUL estimates and reduce error. In Figure 9.2-7 the MdAPE values over lifetime are shown 

for all developed models. 

 

Figure 9.2-7: ToF Errors for Developed Models 

In the figure, the Type I model shows the highest error, while the Type II and III models both 

show a decreasing error in the ToF estimates over the lifetime. This decrease in error is the 

desired result. With more failure cases these models can be refined so that the error is less than 

shown here.  

9.3 Analysis of Heat Exchanger Data 

To determine an optimal lifecycle prognostic method, multiple competing models were created. 

Four signal sets were selected to build auto-associative kernel regression models and ordinary 

least squares regression of each residual set was used to produce prognostic parameters. For the 

General Path Model (GPM), a linear and quadratic fit was used for each case, and Bayesian 

updating was applied. All models developed utilize degradation data collected at a 1 gallon-per-

minute operating condition.  

9.3.1 Signal and Feature Sets 

The first set of calculated features include the log mean temperature difference (LMTD), heat 

rate, and delta temperatures. The two features used in the prognostics models are heat rate and 
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overall heat transfer coefficient given by                               Equation 9-8 and                                

Equation 9-10 respectively.  

                                Equation 9-8 

 

LMTD =    Equation 9-9 

 

                                          Equation 9-10 

  

where A is the surface area of heat transfer. 

 

These signals and features define the state of the system and are selected for inclusion in the 

development of an AAKR model. As mentioned previously in this document, the AAKR model 

requires training, testing and validation data. When cleaning the training data for the AAKR 

model, it is important that the data is fault-free and the test cases operate in the same conditions. 

To reduce system noise, especially for the mass flow rates, a median filter was applied to remove 

outliers exceeding three standard deviations. This procedure removed many of the large spikes 

seen in the mass flow rate signals.  

It is also important to develop AAKR models with groups of related variables. Therefore, the 

linear relationships between the signals and features were analyzed via correlation coefficients. 

Absolute coefficient values of greater than 0.7 correspond to strong correlations between signals, 

and coefficients of 0.25 and below are considered to show no significant linear correlation. Figure 

9.3-1 shows a plot of the correlation coefficients of the raw data and calculated feature indices, 

with indices summarized in Table 14-1.  
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Figure 9.3-1 Correlation coefficients of signals and features 

The figure above shows that there is a strong correlation between signal indices 1 to 4, which are 

the measured temperatures. There is also a strong correlation between signals 1 and 2 and features 

13 to 15, these are respectively the LMDT and heat transfer coefficients. There are moderate 

correlations between signals 1 to 6; 5 and 6 are the flow rates; and 13 to 15. 

Four sets of related variables were chosen based on correlation coefficients and understanding of 

the system processes. Other signal sets were tested during initial modeling, but did not return 

desirable residual values and trends, therefore they were not considered for final lifecycle 

prognostic models. The selected signals and features were chosen either for being moderately-to-

highly correlated to one another or for the strong trend observed. The indices chosen for each 

signal set are given in Table 9-11. 

Table 9-11 Signal sets used for modeling 

Signal Set Signal/Feature Indices Used 

1 2, 3, 11, 12, 14, 15 

2 1, 2, 3, 4, 11, 12, 14, 15 

3 1, 2, 3, 4 

4 1, 2, 3, 4, 14, 15 
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In signal sets one, two, and four, the heat transfer coefficients, heat rates, and temperature signals 

are used.  Since the overall heat transfer coefficients (indices 14-15) are calculated from first 

principles models that are dependent on temperature signals, including them in an empirical 

AAKR model has the effect of increasing both the models’ and prognostic parameters’ 

weightings toward the temperature signals. This may improve modeling attempts when the 

temperature signals have strong increasing trends, and is expected to be more effective than other 

methods of artificially increasing the weightings. 

9.3.2 Auto-Associative Kernel Regression Model 

During pre-processing, the unfaulted heat exchanger data is divided into three data sets termed 

training, testing, and validation.  Training data is used to train the model and should consist of 

unfaulted data that covers the range of operating values. Testing data is used for bandwidth 

optimization and performance metric generation, and validation data is used to validate the 

performance ability of the model. AAKR models for the heat exchanger were developed and 

evaluated with the PEM toolbox. Kernel regression requires a parametric kernel function, in this 

case a Gaussian function, defined by a bandwidth that specifies the region of localized weighting 

for an input vector to the memory matrix output. An optimal bandwidth can be selected by 

altering it to minimize the error between known unfaulted observations and the model output. 

This method of determining the bandwidth increases the accuracy of the kernel regression model. 

The training residuals from an AAKR model of signal set 2 are shown in Figure 9.3-2. 
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Figure 9.3-2 Training residuals for signal set 2 

For this experiment, the training residuals of the temperature signals are desired to be less than 

1 C since the temperature signals change less than 10°C over the faulted range. The training 

residuals of the heat rate should optimally be less than 50 W, and the heat transfer coefficient 

residuals should be less than 10 W/m^2 K. These levels were chosen based on knowledge of 

signal and feature operating ranges over normal cycles. After the model is built, faulted data is 

passed through and residuals for each faulted cycle are calculated. An example of faulted 

residuals for the temperature sensors of signal set 2 is plotted in Figure 9.3-3. 
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Figure 9.3-3 Faulted residuals of temperature signals (indices 1-4) using signal set 2 model 

From the failure residuals shown, strong increasing trends can be seen for the hot leg temperature 

signals. Dominantly monotonic trends are important when combining residuals to make a 

prognostic parameter. When combining the residuals, the objective is for the resulting health 

indicator to increase or decrease over the lifecycle to help indicate the degree of system or 

component degradation. If the observed trends of the residuals show a strong 

increasing/decreasing trend then the resulting prognostic parameter will also have a strong trend 

and be more useful for RUL predictions. 

9.3.3 Prognostic Parameter Generation 

The prognostic parameter is a single metric of the amount of deviation from normal behavior of 

the system and is ideally linked to the overall health of the system.  In this project, it is calculated 

as a linear combination of the residuals from the AAKR model. While a genetic algorithm may be 

used to find a linear combination of weights for the residuals, the algorithm is computationally 

expensive. Instead, an OLS regression is applied that mimics the optimization and is less 

computationally intensive for smaller data sets. The monitoring model residuals of multiple runs 

to failure are collected into a single matrix by concatenating each test case. This creates an n x s 

matrix, X, where n is total data points in all test cases, and s is the number of signal residuals 

output from the model. This X matrix is regressed against the n x 1 vector y where each yi 

corresponds to the percent of the total unit life at that observation. This means that the residuals 

of each test case are fitted to a linear curve from 0 to 1. The linear weights are then  
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                          Equation 9-11 

   

where  is an s x 1 vector. 

9.3.4 General Path Model and Bayesian Updating 

When using the GPM approach, a parametric function is fit to the degradation parameter and 

extrapolated until it crosses a predefined failure threshold. Typically, the failure threshold is 

based on historical failures but need not directly indicate a point of catastrophic failure.  The 

failure threshold can be set as any point where a system no longer conforms to the necessary 

specifications and demands placed upon it.  

Because of the limited number of test cases, the GPM and all components are created by the use 

of a leave one out cross validation (LOOCV) technique. Hence, to calculate the RUL of a specific 

case, every other case is used to build the model. This avoids invalidating a model by keeping 

training and testing data separate yet general enough to compare over all cases. With more data, 

an alternative approach could be to simply divide the cases in half and build one model. The 

degradation path is assumed to have the general linear form: 

                Equation 9-12 

where y is the response a vector, X is the input data matrix, and β is the vector of regression 

parameters. This model assumes normally distributed errors with variance σ2.  

Development of failure thresholds had to be generated with respect to the data. The values were 

chosen as a reflection of an unacceptable amount of degradation, limited by the least degraded 

cycle for any given model. Any data collected after this point was considered past failure and 

removed from the data analysis. A histogram plot of the failure times used in the development of 

the lifecycle prognostic models is shown in Figure 9.3-4. 
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Figure 9.3-4 Histogram of failure thresholds 

If the test case data is censored such that only data before a time step is available, then the RUL 

can be calculated at each time step by extrapolating the current degradation path to the failure 

threshold. To do this, a suitable parametric fit must be chosen. The fit can be of any linearly 

separable functional form such as linear, quadratic or exponential. The OLS method is used for 

regression of the parametric fittings because the OLS regression on a joint Gaussian distribution 

of parameters gives the maximum likelihood estimate. This method assumes that the error is 

normally distributed around zero.  The OLS solution can be found using the pseudo-inverse given 

previously in                          Equation 9-11.  

By adjusting the functions in the columns of the input matrix X, different fits can be applied to 

any test path. It is assumed that for a certain failure mode the degradation paths will follow 

similar fits. Therefore once a suitable fit is chosen for the failed data, it is assumed the censored 

faulted data will follow the same fit.  

Bayesian priors can also be incorporated into the OLS model to reduce the uncertainty and 

increase the stability of RUL estimates. Bayesian statistics combines prior distributions with 

sampled data to create a posterior distribution. If few data points are available during model 

development, then without incorporating any form of Bayesian prior estimations the model can 

easily be affected by noise and give widely varying predictions of time to failure. Bayesian 

methods can be used to incorporate prior knowledge of regression parameters in the GPM.  This 

approach requires historical run-to-failure data in order to evaluate the prior distributions of 

regression parameters. An alternative approach instead uses RUL estimates from Type I 
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prognostic models as prior information.  In this approach, the Type I RUL distribution is treated 

as an additional data point in the OLS regression.  The measured data are augmented with the 

distribution according to:  
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Equation 9-13 

 

where y is the observed prognostic parameter, thresh is the failure threshold, x is the timestamps , 

MTTF is mean failure time from the Type I distribution  is the noise or uncertainty associated 

with the observed prognostic parameter, and  is the uncertainty in the Type I RUL estimate.  

The OLS regression is then solved:  

 

                                           Equation 9-14 

                                                    Equation 9-15 

                          Equation 9-16 

where k is the degree of the parametric function used in the GPM. 

 

The weight of the prior information in the OLS regression depends on two main factors: the 

variance of the prior relative to the variance of the data, and the number of observations collected. 

If the variance of the prior is small compared to the noise of the data, the prior 
0  will be 

weighed more heavily. However, no matter the difference in variance, with enough observations 

the data should eventually swamp out the prior in calculating the posterior. 

9.3.5 Bayes Method Implementation 

For each of the four AAKR models, two prognostic modeling methods are used: 

GPM Method 1: No Bayesian updating 

GPM Method 2: Type 1 Bayes priors 

To compare the two methods, plots of the predicted TTF versus the actual TTF are examined. In 

each plot, the multiple blue lines correspond to the determined TTF of each cycle over time. 

Figure 9.3-5 shows the TTF comparison when no Bayesian updating is used when developing the 

GPM. 
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Figure 9.3-5  GPM method 1 TTF predictions across cycles without Bayesian updating 

Without Bayesian updating, TTF prediction times have large spikes, and prediction accuracy is 

reduced. While some peaks are due to the noise and artifacts in the heat exchanger data 

acquisition system, the somewhat larger and broader peaks at regular intervals are most likely the 

result of the regular additions of clay into the hot fluid. The extra clay would change the 

thermodynamic properties as well as mass flows of the otherwise closed system. In an attempt to 

improve TTF estimation, past cycle failure times are incorporated as prior information (Type I) as 

shown in Figure 9.3-6. 
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Figure 9.3-6 GPM method 2 TTF predictions across cycles with Type I Bayesian updating 

The predictions using Type I prior information show visual improvement over those with no 

Bayesian updating. 

9.3.6 Results and Discussion 
Initial modeling attempts revealed that using a quadratic fit is more accurate than using a linear 

fit; therefore, to conserve space, results will be confined to quadratic fit models. The different 

GPM methods and signal sets (models) are compared using several performance metrics.The first 

model comparison metric used is the Absolute Error Mean (AEM), which returns the average 

absolute difference between the predicted RUL and the true RUL in real time units, shown in 

Figure 9.3-7.   
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Figure 9.3-7 AEM for four signal set models and two GPM methods 

Signal sets 1 and 3 have the lowest AEM, and GPM method 2 further improves the predictions.  

Signal set 1 with GPM method 2 results in the most accurate RUL predictions for this data set. 

The second metric used to evaluate the prognostic models is the Absolute Error Standard 

deviation (AES), which is a measure of the variation in error through time of each model and 

GPM method, shown in Figure 9.3-8.   

 

 

Figure 9.3-8 AES deviation for four signal set models and two GPM methods 
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Again, the model using signal set 1 and GPM method 2 shows the best performance, with highest 

precision in estimating the RUL. To quantitatively compare the different GPM methods, the 

AEM, AES, spread, and coverage metrics are used. A plot showing the results of these metrics for 

each GPM method for signal set 1 is shown in Figure 9.3-9 and the unnormalized metric scores 

are shown in Table 9-12.   

 

 

Figure 9.3-9 Plot of normalized performance metrics for two GPM methods and signal set 1 

Table 9-12 Performance Metrics Scores 

G
P

M
-1

 

AEM 1.7026E4 

AES 9.6206E3 

Spread 131.135 

Coverage 83 

G
P

M
-2

 

AEM 1.1441E4 

AES 5.1395E3 

Spread 70.767 

Coverage 99 

 

These metrics indicate that the Bayesian updating method (GPM Method 2) is more accurate for 

predicting RUL for this data set. 
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9.3.7 Finishing Efforts 
The prognostic methods presented here can be improved in several ways. The noise of the 

prognostics parameter can be reduced by improved filtering or prognostics parameter 

optimization. An optimized prognostics parameter with a well-defined degradation threshold 

could increase the prognosability and decrease the end of life RUL and TTF prediction errors. 

Next, the application of a fault detection method to cut beginning of life test data before a fault is 

detectable could be implemented. Cutting data that is similar to clean or unfaulted data would 

increase trendability, particularly for linear GPM fits that would not accommodate a sudden shift 

in degradation. A mitigating factor to this is that all test cases are initially run with clay in the 

system, so physically some form of degradation is seen at the start of life. 

9.4 Barkhausen Noise Measurements 

As part of a recent collaboration between the Pacific Northwest National Laboratory and the 

University of Tennessee Nuclear PROaCT Research group, an investigation was performed 

evaluating the feasibility of prognostics on passive systems and equipment. Specifically, a data 

set monitoring the Barkhausen noise for a series of mechanically stressed 410-grade stainless 

steel strips. Each specimen is an ASTM-standard tensile test specimen, with a gauge length of 6 

inches (152.4 mm) and specimen thickness of 0.375 inches (9.5 mm). Also a set of Non Linear 

Ultrasonic (NLU) measurements on two thermally stressed rods was provided. Each of these rods 

were heated and rapidly cooled with water to incite fatigue at the water application site. 

In order to mechanically fatigue the stainless steel specimens, each one is repeatedly subjected to 

a 2% strain before being released and tested with a series of Barkhausen measurements. Before 

each tensile test, the specimens are annealed to ensure that all samples have the same initial stress 

state. The locations of the Barkhausen measurements are generally selected to be symmetric 

about the center of the specimen. At each location, multiple measurements are typically made to 

assess repeatability and quantify measurement noise levels. Probe placement is done manually, 

with the probe lifted away from the surface between successive measurements. The process of 

stressing the specimen, releasing, and then testing was repeated until the specimen fails. 

9.4.1 Analysis 

A single test case was provided to the University of Tennessee for evaluation of the feasibility of 

prognostic indications. This specimen had three sites, and two configurations for each 

Barkhausen noise measurement. Three samples were taken at each site with both configurations 

for a total of twelve descriptive measurements taken at each level of strain. The three testing sites 

are shown in Figure 9.4-1 and are designated as (A) Top, (B) Middle, and (C) Bottom.  
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Figure 9.4-1: (a) Experimental setup for tensile test. (b) Typical measurement locations on 
tensile specimen 

The two configurations of Barkhausen noise collection are with the exciters parallel to the 

direction of strain, and with them perpendicular to the direction of strain, which is shown in 

Figure 9.4-2. 

 

Figure 9.4-2: Barkhausen Peaks vs. Strain 
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From these plots it is clear that the peak voltage required to initiate Barkhausen noise has strong 

trends with the strain of the specimen; negative for parallel, and positive for perpendicular. 

Unfortunately in real systems the direction of strain may not always be known. While one 

solution to this would be to take measurements in incremental angular directions, this may be 

time consuming and less than practical in many applications. These charts would also seem to 

imply that the maximum voltage requirement will be in the direction of strain, and the minimum 

90o shifted from this. As strain increases, the distance between these two values seems to 

decrease. If there is a continuous progression of these angles, then it can be inferred that the ratio 

of any two measurements made should show a closing distance of peak voltage with increasing 

strain. Shown in Figure 9.4-3, two obvious methods for monitoring this would be either the 

distance between similar 90o peaks or their ratio or the larger to the smaller.  

 

Figure 9.4-3: 90o Barkhausen Relationships 

The figure seems to indicate that the ratio moves to 1 right before failure of the specimen (or 

distance moves to 0 between opposed directional measurements). The site of most stress (A) has 

the closest relationship between the two measurement directions, and subsequently is the location 

of the final failure of the specimen.  
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Assuming these results are consistent across any arbitrary repeated set of 90o separated samplings 

at a given location; this shows promise for monitoring and predicting impending failure of 

passive structures through Barkhausen monitoring. Additional testing in both arbitrary angular 

configurations and additional sample specimens are required before any major conclusions are 

drawn, but initial findings are promising. 

9.5 Non-Linear Ultrasonic Measurement System 

The mechanical strain Non-Linear Ultrasonic (NLU) measurement system test-bed was designed 

to use two configurations of a "transmit-receive" pair of ultrasonic transducers: through 

transmission and guided wave. Shown in Figure 9.5-1, are the transmitting and receiving probes 

of the through-transmission mode, these are on opposite faces of the specimen and aligned center-

to-center. 

 

Figure 9.5-1: Schematic of through transmission mode for NLU measurement 

Conversely, the guided wave approach recording NLU measurements has the transmitting and 

receiving transducers mounted on Rexolite wedges separated by a known distance as shown in 

Figure 9.5-2. 

 

Figure 9.5-2: Schematic of guided wave mode for NLU measurement 

In each case, the transmit probe has a center frequency of 5 MHz with a bandwidth of 

approximately 60%. The receiving transducer has a center frequency of 10 MHz with 



195 
 

approximately the same bandwidth. For each cycled test, a 5-cycle tone burst signal at an incident 

frequency of 4.5 MHz is transmitted using the transmit transducer, and the resulting response 

recorded using the receiving transducer. The data is recorded at 500 MHz prior to saving to disk. 

This process was repeated using tone bursts at 5 MHz and 5.5 MHz. At each frequency, three 

different input power levels (corresponding to an input voltage to the power amplifier of 100 mV, 

200 mV, and 300 mV) were applied to the ultrasonic probe.   

9.5.1 Time Series Investigation Results 

The University of Tennessee was provided with the raw data files for two separate stainless steel 

specimens. Sample 1 corresponds to the through-transmission configuration, and Sample 2 

corresponds to the guided wave measurements. Working from a data driven standpoint, the initial 

investigation centered on identifying progressive and trendable features were consistent for both 

specimens. By first looking at the amplitude of the raw signal on log scale for each of the cycled 

tests, as in Figure 9.5-3 and Figure 9.5-4, it becomes very clear that there are progressive features 

in both of the samples as they degrade. 

 

Figure 9.5-3 : Sample 1 Raw Signal Amplitude Though Testing Lifetime 
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Figure 9.5-4 : Sample 2 Raw Signal Amplitude Though Testing Lifetime 

Although the two samples do not exhibit identical progressive features, there are clearly similar 

evolutions of features between the two samples. The first and most obvious feature is the 

temporal location of the primary waves shifting with increased cycling and fatigue. However, 

while Sample 1 (the through-transmission configuration) exhibits significantly more residual 

wave pulses in different temporal locations than Sample 2 (the guided wave configuration). As an 

alternative to this temporal tracking that requires user visual inspection and input, or sophisticated 

peak tracking algorithms, there also appears to be progressive trends in the overall power of the 

transmitted signal. This can quickly be approximated by the total signal Root Mean Square 

(RMS) value.   
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Figure 9.5-5 : Time Series Log Scale RMS over Samples Lifetime 

Shown in Figure 9.5-5, the RMS for both samples show progressively downward trends. The 

“saw-tooth” nature of these signals corresponds to the cyclic nature in the monitoring procedure 

where the transmissions were made with progressive frequency and power levels for each stress 

cycle. These can easily be extracted to separate progressive features for a designated transmission 

setting, as shown in Figure 9.5-6. 

 

Figure 9.5-6: Time Series Feature vs. Percent Load Separated By Test Configuration 
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Each of the nine configurations, shown as the colored circles, creates mostly parallel trends 

through testing with basically no crossover. Both samples exhibit an overall downward average 

trend, as denoted by the solid line. Additional investigation revealed that the frequency 

configuration has much greater impact on the transmission received than the voltage level. 

Regardless, none of these transmissions setting have a significant impact on overall trend, or 

progressive shape of these features.  

9.5.2 Frequency Analysis 

Another intuitive area of investigation for any oscillatory signal is the frequency domain, and 

much like the time domain investigation, even the most cursory investigation reveals progressive 

trends.  

 

 

Figure 9.5-7: Frequency Maps Through Sample Lifetime 

From Figure 9.5-7, several things become clear. First, although Sample 1 has a much higher 

range of significant frequencies, both configurations of samples show an overall decreasing 

amount of power in their dominant frequencies (an echo and conformation of the findings from 

the time series RMS). Second, both samples have most of their power in the lower frequency 
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ranges, from approximately 1 to 10MHz. Expanding this range, as in Figure 9.5-8, reveals that 

several of the dominate frequency ranges experience significant shifts throughout the lifetime of 

the sample. 

 

Figure 9.5-8: Expanded Frequency Map through Sample Lifetime 

In particular, it becomes obvious that while the dominant frequencies shift locations based on the 

transmission type and configuration, the loss of power follows degradation and fatigue of the 

specimen. Major peaks below 10MHz seem to consistently lose power over both specimens. If 

these frequency power ranges are extracted for both samples, as shown in Figure 9.5-9, a simple 

feature progression similar to that found with the time series analysis can be seen. 
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Figure 9.5-9: Extracted Frequency Power over Sample Lifetime 

Although the variance from sample configuration is larger than that compared to the time series 

feature, the overall negative trend remains the same for each sample. In the next section a generic 

pattern matching method is discussed. 

9.5.3 Generic Pattern Matching  

Previous work had focused on the generic monitoring of transient signals for deviations from 

normality with the end goal of prognostic feature extraction [Sharp 2012]. The transmitted pulses 

in this testing procedure meet all the criteria of transient signals and make a suitable candidate for 

this process. Assuming nothing about the qualities of the recorded signals, a broad timescale 

Sharp Transform is applied to the signals and their residuals calculated throughout the lifetime of 

the sample. 
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Figure 9.5-10: Sharp Transform Residuals Sample 1 

 

Figure 9.5-11: Sharp Transform Residuals Sample 2 
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Both samples in the previous two figures show a clear pattern of increased deviation from 

normality with the increased load. It should also be noted that due to the low number of unique 

unstressed test configurations, all the various configurations were compared to a single model 

built upon each corresponding sample. Even so, the progressive trends are clearly evident in both 

samples.  
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10. Task 10 and Task 11: Validation of Developed 
Procedures 

After development of the completed lifetime prognostic toolset, a stage of verification and 

validation is required to evaluate the developed algorithms and tools. What follows is the 

completion of Task 10 and Task 11 with the procedures for developed algorithms and programs. 

This section will provide the code and procedures needed to create algorithms using both 

simulated degradation data and data collected from the physical setups during this project.  

10.1  General Transitioning Procedure Example 

10.1.1 Type I to Type II 

For Type I to Type II transitions, the prior is developed during the Type I analysis. Specifically, 

the results of Weibull or Gaussian analysis give a RUL distribution with known parameters, 

which forms the prior. If a simple grouping of historical failures based on similar operating 

conditions is the Type II analysis, though this method can be generalized for any Type II model 

that yields a known distribution, the RUL estimate is based off a group of failed components. A 

fit to the distribution gives the sampling data needed. 

Data was simulated, such that 1000 paths were generated following different operating 

conditions. At greater operating conditions, more stress was added until failure was reached 

following the LCM. The conditions varied from 1 to 3, with 3 as the harshest operating conditions 

and most amount of stress. Figure 10.1-1 shows the Type I prior distribution, while Figure 10.1-2 

shows the Type II selected distribution.  
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Figure 10.1-1 TOF Distribution for all Historic Data, with Normal Fit 

 

 

Figure 10.1-2 TOF Distribution for High Stress Paths 

Though traditionally a Weibull fit is used for Type I analysis, for simplicity normal distributions 

were fitted to both data sets. The prior, Type I distribution, was found to be ~N(73.8, 36.4). The 

distribution of the 337 high stress paths was ~N(67.0, 3.23). Using                                    Equation 
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3‐4 gives an expected value of 67.0 with a posterior variance of .00959. In this case the large high 

stress sampling group, with small variance, easily swamped out the prior. The posterior mean is 

very close to the sampling mean, and the posterior variance is very small, meaning there is likely 

to be very little change in the sampling mean as more data is included.  

10.1.2 Transitioning Example Type I/II to GPM Transitions 

To demonstrate the various transitions into GPM the 2008 Prognostics Health Management 

Challenge Data was used. This consisted of 260 training examples of 24 signals ending in failure, 

and 259 censored testing examples of the same 24 signals. The actual RUL of the testing 

examples were given for validation.  

To apply the GPM the 24 signals were converted into a single prognostics parameter for both 

datasets. Figure 10.1-3  shows the prognostics parameters for the training set, while Figure 10.1-4 

shows the TOF distribution.  

 

Figure 10.1-3 Prognostics Parameters of Training Set 
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Figure 10.1-4 TOF Distribution with Weibull Fit 

Several models were used to accurately estimate the RUL of each of the testing paths. First, for 

comparison, the standard GPM was applied to each testing path. This was under the assumption 

that the functional forms of the paths were known to be quadratic. The paths were then 

extrapolated by using OLS,                            Equation 3-7, to the degradation threshold taken from the 

failure points of the train paths.  

Next the GPM was used with Bayes priors for each of the three parameters. These were obtained 

from OLS regression of the training set. As stated previously, both the prior and posterior 

distributions of the path parameters follow the conjugate Gaussian pair.                          Equation 

3-11 and                                   Equation 3-12 were applied to obtain the posterior mean and 

variance, based on the prior distributions: 

  Equation 10-1 

The previous two methods are, if not widely established, not new to prognostics (Coble 2010).  In 

order to implement both models, however, extensive knowledge of past failure paths is needed for 

the functional fit, priors, and critical threshold. In cases of more limited information different 

models can be applied. First, it is assumed that instead of the full paths, only information about 

the failure points are known, both the TOFs and critical threshold. This data can also be 

substituted using information about the process. If there exists a Type I analysis, it can be used to 
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form the TOF distribution needed. Also if the prognostics parameter has physical significance, 

and not a complex amalgam of signals, then either an artificial threshold can be established, or it 

can be set by the physical properties of reaching a certain measured quantity, e.g. a macroscopic 

crack that cuts across a beam.  

However the relevant information is obtained, if the TOF distribution and threshold are known, 

the previous GPM using OLS regression can be used in a slightly different way. To incorporate 

Bayes priors, they are treated as additional data points. The variance-covariance matrix Σ contains 

the information that separates them from regular data points, the prior precision. The difference in 

scale between data points and the priors gives the Bayes weighting. Using the TOF distribution 

and threshold, the same concept can be applied. First it must be remembered that one assumption 

of the OLS model is that errors are only distributed among the response, Y, values. However, the 

TOF distribution stretches across a different dimension. Classical statistics shows that for two 

random variables following normal distributions, the sum distribution is also normal, with a 

variance of the sum of variances [Garcia 2008]. In this case error is a simple linear addition of the 

X and Y errors. Mathematically: 

                   Equation 10-2 

This total variance is the precision that should be entered into the variance-covariance matrix. For 

the current data set, while the noise variance is 1.308, the total variance of our prior data point is 

2.19e3, much higher than the noise. This means that the prior will be weighed less, as previously 

seen, it can still be significant in cases in which limited test data is available. The X matrix should 

be appended with the mean TOF, and the Y with the threshold. Then the GPM can be applied as 

usual.  

Another difficulty in applying the GPM with limited past data is that the functional form may not 

be known. If a fault is tracked for a process that has not yet been seen, unless extensive 

knowledge is known about the underlying process and future operating conditions, a path cannot 

be definitively given a functional form. However most short data sequences can be approximated 

using linear fits. A strategy of adopting a linear fit for early data points has some benefits. The “y-

intercept” parameter constant can easily be obtained, leaving only one unknown parameter, the 

slope.  

For this data set, a Weibull distribution was fit to the “Type I” TOF data. The parameters λ=225.7 

and k=4.39 were found. If the slope parameter follows a Gaussian distribution, it can be seen that 
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the MLE of the slope will correspond to one that will lead the line from its start to the mode of 

the Weibull at the threshold. The mode can be found: 

                             Equation 10-3 

And the prior slope mean is: 

                                                  Equation 10-4 

The prior slope variance can be found using Monte Carlo simulations. For the slope to be 

statistically significant, it can be expected that the 95% confidence interval, or 2 standard 

deviations, do not encompass 0. Therefore the standard deviation exists between 0 and the mean. 

Using this logic, 100 values between 0 and the mean were selected as possible standard 

deviations. For each value, 1000 observations were given following a normal distribution with the 

mean and test deviations. The standard deviation that gave a distribution with the closest 

Euclidean distance to the Weibull fit was chosen as the prior slope deviation. Using the prior 

slope mean, variance, intercept mean, and intercept variance, which is used as the noise variance, 

can facilitate in forming the prior distributions for a linear model. It can be expected that because 

it is known that this data set follows more closely to a quadratic form, rather than linear, there 

will be some error.  

To summarize, four different prediction methods were applied to the test set to estimate RUL for 

each case: (1) OLS regression, (2) OLS with Bayesian prior parameters, (3) using Type I data as a 

data point, and (4) using Type I data for a linear path to get Bayesian prior parameters.  
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Figure 10.1-5 Comparison of OLS Models for Predicting RULs on PHM Data 

As expected, Figure 10.1-5 shows the method that minimizes the error is (2). This model takes 

advantage of the most data, in the form of the average parameter distributions from previously 

failed cases. Model (3) restricts this data greatly to reduce the error from the standard GPM (1) 

model. Though models (3) and (4) take advantage of the same data, (4) forces the GPM to follow 

a linear path, though we know this to not be the case. 

10.2  Pump Impeller Example Case 

10.2.1 Type I Prognostic Model Development 

The total number of tests that were performed in the impeller degradation experiment was 28, but 

10 of these were removed because they had unsuitable features for model development. To run 

the LOOCV code for the Type I models for a certain percentage of system life is accomplished 

by: 

pLife = [0.1:0.1:0.9]';  % percent of life % 
% Type I Prognostics Model 
RUL = nan(size(mod_dat,1),numel(pLife)); 
RUL_act = nan(size(mod_dat,1),numel(pLife)); 
TOF_act = nan(size(mod_dat,1),numel(pLife)); 
  
 for ii = 1:size(mod_dat,1) 
    train = mod_dat(:,2); train(ii,:) = []; 
    test = mod_dat(ii,2); 
    model = initTypeI(train); %,'distribution','normal'); 
    % find the total lifetime of test case % 
    TOF = test; 
    currsys = [pLife*TOF]; 
    a = runTypeI(model,currsys); 
    RUL(ii,:) = a.RUL; 
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    RUL_act(ii,:) = TOF - currsys(:,1)'; 
    TOF_act(ii,:) = TOF*ones(1,9); 
end 
  
MAPEI = mean(abs(RUL-RUL_act)./TOF_act)*100; 
MEDIAPEI = median(abs(RUL-RUL_act)./TOF_act)*100; 
figure; plot(pLife,MEDIAPEI) 
legend('Type I') 
xlabel('Percent of Life') 
ylabel('MAPE') 
title('MAPE for Type I LOOCV Models') 
figure; plot(ones(18,1)*pLife',abs(RUL-RUL_act)./TOF_act*100,'.') 
hold on 
plot(pLife,100*ones(size(pLife)),'k--') 
xlabel('Percent of Life') 
ylabel('APE') 
title('APE for Type I LOOCV Models') 
 

This code will perform the LOOCV method, calculate the ToF error and plot the results. 

10.2.2 Type II Prognostic Model Development	

The Type II model developed for this research was the Proportional Hazards Model (PHM), 

which uses the operating conditions that the average component experiences during normal 

operations as additional information for RUL estimates.  This new type of model requires four 

pieces of information that are placed into a specific structure, this information is: 

 Operating Conditions- this are the operating used in testing, here 100, 75 and 50 percent 

outlet line open 

 Failure times – these must be matched to each operating condition 

 Frequency of Failure – must also me matched to operating conditions, if there were 5 

failures that occurred at 3 days for the 100% operating condition, then the frequency 

value for 3 days is 5 

 Censoring – tests that should be included or excluded from the model, 0 for no censoring 

and 1 for censored 

 

This information is placed into an n x 4 matrix; in this case there were 15 different combinations 

of operating conditions and failure times so the matrix for the development of the PHM is size 18 

x 4.  

The data structure for the PHM looks like: 

  100.0000    1.8000    1.0000         0 
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  100.0000    4.9000    1.0000    1.0000 

  100.0000    4.3000    1.0000         0 

  100.0000    3.7000    1.0000    1.0000 

  100.0000    2.9000    1.0000    1.0000 

  100.0000    0.4500    1.0000    1.0000 

   75.0000    0.4700    1.0000         0 

   75.0000    0.3500    1.0000         0 

   75.0000    0.7700    1.0000         0 

   75.0000   33.0000    1.0000         0 

   75.0000    5.8000    1.0000    1.0000 

   75.0000    2.4000    1.0000    1.0000 

   75.0000    5.9800    1.0000         0 

   75.0000    1.1900    1.0000    1.0000 

   75.0000    5.9700    1.0000         0 

   50.0000   10.0400    1.0000         0 

   50.0000   24.7200    1.0000         0 

   50.0000    5.1900    1.0000         0 

Once this data is place into a matrix, then the development of the PHM can begin. The first step is 

to generate the reliability functions for each of the operating conditions and then check for 

proportionality. The proportionality is checked by taking the log of the negative log of the 

reliability functions and then plotting the results. Next the code that will generate the results and 

plots for this first step is shown. 

%PHM Code 
%seperate data based on operating condition 
d1 = mod_dat(1:5,:); 
d2 = mod_dat(6:15,:); 
d3 = mod_dat(16:18,:); 
  
%weibull fit on the three operating conditions 
dc=[0:70]; 
phat1=wblfit(d1(:,2),5,d1(:,4),d1(:,3)); 
phat2=wblfit(d2(:,2),5,d2(:,4),d2(:,3)); 
phat3=wblfit(d3(:,2),5,d3(:,4),d3(:,3)); 
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%generate and plot reliability functions 
OC1=wblcdf(dc,phat1(1),phat1(2)); 
plot(1-OC1,'r');hold on 
OC2=wblcdf(dc,phat2(1),phat2(2)); 
plot(1-OC2,'b');hold on 
OC3=wblcdf(dc,phat3(1),phat3(2)); 
plot(1-OC3,'k');hold off 
legend('100% Open','75% Open','50% Open') 
ylabel('Fractional Likelihood of Failure') 
xlabel('Failure Time (days)') 
title('Type II Reliability Functions') 
  
%calculate and plot proportionality of reliability functions 
oc11=-log(1-OC1); 
oc22=-log(1-OC2); 
oc33=-log(1-OC3); 
  
figure;plot(log(oc11),'r');hold on 
plot(log(oc22),'b'); 
plot(log(oc33),'k');hold off 
legend('100% Open','75% Open','50% Open') 
ylabel('log of Fractional Likelihood of Failure') 
xlabel('Failure Time (days)') 
title('Proportionality Check of Reliability Functions') 
 

The first plot generated is the reliability functions for each operating condition and the second is 

the proportionality check of the reliability functions, shown in Figure 10.2-1 . 

 

Figure 10.2-1: Operating Condition Reliability Functions & Proportionality Check 

 

 Next, initialize the Type II model and run using the current system times to obtain RUL 

estimates and errors as in the Type I model: 
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%% Type II 
 % initialize RUL % 
RUL = nan(size(mod_dat,1),numel(pLife)); 
RUL_act = nan(size(mod_dat,1),numel(pLife)); 
  
for ii = 1:size(mod_dat,1) 
    train = mod_dat; train(ii,:) = []; 
    test = mod_dat(ii,:); 
    model = initPHM(train(:,1),train(:,2),'baseline',100); 
    % find the total lifetime of test case % 
    TOF = test(2); 
    test_cov = test(1); 
    currsys = [pLife*TOF test_cov*ones(size(pLife))]; 
    RUL(ii,:) = runPHM2(model,currsys); 
    RUL_act(ii,:) = TOF - currsys(:,1)'; 
end 
  
  
MAPEII = mean(abs(RUL-RUL_act)./TOF_act)*100; 
MEDIAPEII = median(abs(RUL-RUL_act)./TOF_act)*100; 
 

The same plotting functions can be used as in the Type I model. 

10.2.3 Type III Prognostic Model Development 

The Type III model used for this research was the General Path Model (GPM), which requires 

degradation paths that are extracted as features from the raw data. The majority of the work in the 

GPM development is the extraction of features that show trends seen in the test cases. An 

example of a trend is a signal mean value steadily increasing or decreasing over time. Several 

feature extraction methods were explored during the course of research, including statistical 

measures, peak tracking in the frequency domain, and failure residuals generated from an AAKR 

model. For brevity, only the generation of the model failure residuals will be shown as a feature 

extraction technique.  

The data was collected as text files in LabView and then transformed into data matrices in 

MATLAB. Each pump has three measured signals: vibration, differential pressure and current. 

Each pump test is labeled in sets based on the operating conditions used; an example of the file 

"1set_100_finaldata" has three pump tests is seen by typing "whos" in command line once the 

data file is loaded into the workspace: 

 whos 

  Name                 Size                       Bytes       Class     

  pump1set1      2519040x3             60456960  double               
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  pump2set1      1176000x3             28224000  double               

  pump4set1      2519040x3             60456960  double  

In total, there were 7 sets of pump tests, with a total of 24 pumps tested to failure. An OLS 

method was used that combined the time domain features into a prognostic parameter. As in the 

previous models, the LOOCV is the same for the GPM: 

%% Type III  
clear currsys 
  
% initialize RUL % 
RUL = nan(size(new_failtimes'),numel(pLife)); 
RUL_act = nan(size(new_failtimes'),numel(pLife)); 
  
for ii = 1:size(new_failtimes') 
    train = cut_progparams; train(ii) = []; 
    test = cut_progparams{ii}; 
    model = initGPM(train,'npop',0); 
    % find the total lifetime of test case % 
    TOF = size(test,1); 
    t = floor(pLife*TOF); 
    for jj = 1:numel(t) 
        currsys{jj} = [[1:t(jj)]' test(1:t(jj),:)]; 
    end 
    a = runGPM(model,currsys); 
    RUL(ii,:) = a.RUL*10/(24*60); 
    RUL_act(ii,:) = (TOF - t')*10/(24*60); 
end 
  
MAPEIII = mean(abs(RUL-RUL_act)./TOF_act)*100; 
MEDIAPEIII = median(abs(RUL-RUL_act)./TOF_act)*100; 
 

The plotting functions can again be applied so that the error results may be compared. 

10.3  Monitoring and Prognostics Tutorial 
The following example employs the PEM and PEP Toolboxes to develop monitoring, fault 

detection, and prognostic models for a simulated turbofan engine.  The data and a description of 

its simulation are available at http://ti.arc.nasa.gov/project/prognostic-data-repository. The 

necessary data file is included in the PEP Toolbox. The code below can be pasted into MATLAB; 

results are shown after the generating code. 

The PHM Challenge data set consists of 218 cases of multivariate data that track from nominal 

operation through fault onset to system failure. Data were provided which modeled the damage 

propagation of aircraft gas turbine engines using the Commercial Modular Aero-Propulsion 
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System Simulation (C-MAPSS).  This engine simulator allows faults to be injected in any of the 

five rotating components and gives output responses for 58 sensed engine variables. The PHM 

Challenge data set included 21 of these 58 output variables as well as three operating condition 

indicators, for a total of 24 measured variables. Each simulated engine was given some initial 

level of wear, which would be considered within normal limits, and faults were initiated at some 

random time during the simulation. Fault propagation was assumed to evolve in an exponential 

way based on common fault propagation models and the results seen in practice. Engine health 

was determined as the minimum health margin of the rotating equipment, where the health 

margin was a function of efficiency and flow for that particular component; when this health 

indicator reached zero, the simulated engine was considered failed.   

This example application of health monitoring will look at developing a system without the 

benefit of the domain knowledge described above.  Here, the available data is used to develop 

each module from sensor selection through modeling, fault detection, and prognosis.   

% Script to run through model development and optimization, system        % 

% monitoring, fault detection, and prognostic model development with the  % 

% PEM and PEP Toolboxes                                                   % 

  

% System will be developed for the 2008 PHM Challenge Data, available at  % 

% http://ti.arc.nasa.gov/project/prognostic-data-repository               % 

  

load PHMchalldata 

  

%% Divide Data 

  

% Assume first 15% of each data run is fault free for monitoring system   % 

% development and optimization.                                           % 

  

train = []; 

for i = 1:260 

    train = [train;trn{i}(1:floor(0.15*size(trn{i},1)),:)]; 

end 

  

% Divide "fault free" data into training, test, and validation data       % 

[x1 x2 x3 x4 x5 x6 x7 x8] = vensample(train,8); 

training = [x1; x3; x5; x7]; 

testing = [x2;x6]; 

validation = [x4;x8]; 

  

clear x1 x2 x3 x4 x5 x6 x7 x8 

  

%% Choose Monitoring Model Inputs 
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% Model inputs are chosen based on linear correlations between available  % 

% variables.  Correlations with magnitude less than 0.3 are considered    % 

% unuseful; those with magnitude between 0.3 and 0.7 may have some        % 

% predictive power, and those with magnitude greater than 0.7 are         % 

% considered good predictors.                                             % 

  

% The PEM function AAGROUP() divides data into groups for auto-associative% 

% model development.  It uses a cut-off of 0.7 to identify appropriate    % 

% groups from the data.  This function gives us two groups, as shown.     % 

% Notice that some variables are members of both groups.                  % 

  

Groups = aagroup(training); 

  

disp(['Group 1 :',10]) 

disp(Groups{1}) 

disp(['Group 2 :',10]) 

disp(Groups{2}) 

gcplot(training,Groups) 

 

Variables:24 

Observations:3972 

Removed Sensors:  

The number of the removed sensors:0 

Group 1 : 

 

  Columns 1 through 20 

 

     1     2     4     5     6     7     8     9    10    11    12    13    14    

15    17    18    19    20    21    23 

 

  Column 21 

 

    24 

 

Group 2 : 

 

     3    11    14    16    17    18    21    22 

 



217 
 

 

Figure 10.3-1: Correlation Coefficients Between Signals 

  

% We can use the variables in Group 1 to make a monitoring system. This   % 

% model will have 21 variables.                                           % 

  

train = training(:,Groups{1}); 

test = testing(:,Groups{1}); 

val = validation(:,Groups{1}); 

  

% Initialize Monitoring System Model % 

model = initmodel('aakr',train,'nmem',500); 

model = 

setmsa(model,'plotresults',0,'fdetmethod','sprtn','variablenames',num2cell(Group

s{1})); 

model = optmodel(model,test,'error','bandwidth',[0.5 0.75 1.0 1.5]); 

model = modchar(model,val); 

  

%% Monitoring and Fault Detection  

  

% Now we can use our models for system monitoring, residual generation and% 

% fault detection.                                                        % 

  

% Extract SPRT attributes for use in fault detection                      % 

m1 = model.attributes.error.mean; 

v1 = model.attributes.error.std.^2; 

t1 = model.attributes.sprttolerance; 

  

% Calculate model predictions, residuals, and fault hypotheses for each   % 

% model                                                                   % 

  

trn2 = cell(size(trn)); 
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Fhyp = cell(size(trn)); 

  

for i = 1:length(trn) 

    trn2{i} = trn{i}(:,Groups{1}); 

end 

  

res = residgen(model,trn2); 

  

for i = 1:260 

    Fhyp{i} = sprtn(m1,v1,res{i},0.01,0.1,t1); 

end 

  

%% 

  

% Let's look at the results for run #2                                    % 

for j = [2 5 20] 

    figure 

    subplot(2,1,1); plot(Fhyp{2}(:,j),'o'); 

    ylabel('Fault Hyp');  

    title({['Variable ' num2str(model.attributes.variablenames{j})],... 

        'SPRT Fault Hypotheses'}); 

    axis([-inf inf -0.05 1.05]) 

    subplot(2,1,2);plot(res{2}(:,j)); 

    xlabel('Time (cycles)'); 

    ylabel('Error'); 

    title('Residuals'); 

    axis([-inf inf -inf inf]) 

end 

 

Figure 10.3-2: Sequential Probability Ratio Test of Variable 2 
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Figure 10.3-3: SPRT of Variable 6 

 

Figure 10.3-4: SPRT of Variable 23 

  

  

%% Prognostic Models - Type I Model 

  

% Type I models are traditional time-to-failure models. The most common   % 

% distribution for developing this kind of model is the Weibull           % 

% distribution, which can model burn in, random failure, and wear out. The% 

% Time of Failure for each failed case is the only data needed to develop % 

% this type of model.                                                     % 

  

TOF = zeros(length(trn),1); 

for i = 1:length(trn) 
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    TOF(i) = length(trn{i}); 

end 

  

typeI = initprog('typeI',TOF) 

typeI.parameters 

 

typeI =  

 

            type: 'TypeI' 

    distribution: 'weibull' 

      parameters: [1x1 struct] 

            data: [1x1 struct] 

 

 

ans =  

 

     beta: 4.3883 

    theta: 225.6644 

  

% The RUL of a new system is estimated based only on the amount of time   % 

% that system has been running.                                           % 

  

current_time = zeros(length(tst),1); 

for i = 1:length(tst) 

    current_time(i) = length(tst{i}); 

end 

TypeIOut = runtypeI(typeI,current_time); 
RUL_typeI = TypeIOut.RUL; 
  

MAPE_typeI = mean(abs(RUL - RUL_typeI)./RUL*100); 

  

figure; hold on 

plot(RUL,RUL_typeI,'bo'); 

plot(0:200,0:200,'r--'); 

hold off 

box 

xlabel('Actual RUL (cycles)') 

ylabel('Estimated RUL (cycles)') 

title(['Type I RUL Estimation Error : MAPE = ' num2str(MAPE_typeI)]) 
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Figure 10.3-5: Type I RUL Estimation Error 

  

%% Prognostic Models - Type II Model 

  

% Type II models consider the past and expected future operating          % 

% conditions of a system when making prognostic estimates.  One example of% 

% a Type II algorithm is the Markov Chain model. This model uses a        % 

% transition probability matrix to simulate possible future operating     % 

% conditions and relates these conditions to a degradation measure. The   % 

% PHM Challenge Data has six distinct operating condtions, so it may be   % 

% well suited to this type of model.                                      % 

  

% Format historic operation condition progressions to be numbered 1 - 6.  % 

% These numbers have no ordinal relationship.                             % 

  

old_oc = cell(size(trn)); 

for i = 1:length(trn) 

    old_oc{i} = trn{i}(:,1); 

end 

  

[new_oc map] = MCdata(old_oc); 

  

typeII = initprog('MC',new_oc,'RULcon',0.5) 

typeII.Q 

typeII.b 

  

typeII =  

 

         type: 'MC' 

            Q: [6x6 double] 

            u: [0.1577 0.1346 0.1231 0.1885 0.1385 0.2577] 
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            f: @(b,t)t*b 

            b: [6x1 double] 

    threshold: 100 

         npop: 1000 

       RULcon: 0.5000 

 

 

typeII.Q = 

 

    0.1474    0.1520    0.1512    0.1521    0.1430    0.2544 

    0.1440    0.1508    0.1502    0.1472    0.1524    0.2554 

    0.1455    0.1466    0.1517    0.1468    0.1588    0.2506 

    0.1543    0.1568    0.1479    0.1507    0.1415    0.2488 

    0.1502    0.1551    0.1542    0.1465    0.1511    0.2431 

    0.1536    0.1460    0.1518    0.1488    0.1500    0.2498 

 

 

typeII.b = 

 

    0.6506 

    0.3333 

    0.4624 

    0.5269 

    0.7096 

    0.2334 

 

% Format test path operating conditions to the MC classes 1 - 6 using the % 

% map identified previously.                                              % 

  

test_oc = cell(1,259); 

for i = 1:259 

    test_oc{i} = tst{i}(:,1); 

end 

test_oc = MCdata(test_oc,'map',map); 

  

% Estimate the 50% RUL for each test run.                                 % 

  

TypeIIOut = runMC(typeII,test_oc); 
RUL_typeII = TypeIIOut.RUL; 
 

%% 

  

MAPE_typeII = mean(abs(RUL - RUL_typeII)./RUL*100); 

  

figure; hold on 

plot(RUL,RUL_typeII,'bo'); 

plot(0:200,0:200,'r--'); 

hold off 
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box 

ylabel('Estimated RUL (cycles)') 

xlabel('Actual RUL (cycles)') 

title(['Type II RUL Estimation Error : MAPE = ' num2str(MAPE_typeII)]) 

 

 

Figure 10.3-6: Type II RUL Estimation Error 

  

% We see that the results of this model are not very good. If we look back% 

% at the transition probability matrix and linear fit, we see that we do  % 

% not get much extra information from the markov chain formalism. The     % 

% probability of transitioning between any two states is nearly equivalent% 

% and the total time spent in any one operating condition does not seem to% 

% give us much information about the degradation level.                   % 

  

 

%% Type II Markov Chain with Bayes 

  

% It is possible to combine the Type II Markov Chain model with the Type I 
% model using Bayesian transition. This type of transition however is not  
% recommended when using redundant data for both models, as in this case.  
% If however the sources of data are different, then the models will  
% combine information from both sources to give a more precise RUL  
% estimate.  
  

TypeIIBOut = runMC(typeII,test_oc,typeI); 

RUL_typeII_B = TypeIIBOut.RUL; 

  

MAPE_typeII_B = mean(abs(RUL - RUL_typeII_B)./RUL*100); 
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%% Prognostic Models - Type III Model 

  

% Type III models consider the actual condition of the system, either     % 

% measured or inferred from other measurements.  These condition          % 

% measurements are fit to a parametric model which is then extrapolated to% 

% a pre-defined critical failure threshold.                               % 

  

% The first step is to identify an appropriate prognostic parameter.      % 

% Monitoring model residuals are a natural choice for prognostic          % 

% parameters because they naturally characterize how "far" the system is  % 

% operating from normal behavior. For this example, we are looking for the% 

% optimal linear combination of the 21 residuals based on a sum of the    % 

% three suitability metrics: monotonicity, prognosability, and            % 

% trendability.                                                           % 

  

  

% The optimized parameter includes a subset of the monitoring system      % 

% residuals. Residuals are chosen for inclusion in the GA by calculating  % 

% the fitness of each individual residual and including only those with   % 

% total suitability over 2.0                                              % 

param = optparam(res,'inputs','subset','cutoff',1.0) 

par = paramgen(param,res,true); 

title(‘GA Parameter’) 

[m p t] = ppmetrics(par) 

  

m = 

 

    0.6916 

 

 

p = 

 

    0.8674 

 

 

t = 

 

    0.8684 
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Figure 10.3-7: Training Degradation Paths 

% A prognostic model is developed for the GA optimized parameter          % 

typeIII = initprog('gpm',par,'bayesian',true) 

 

typeIII =  

 

              type: 'GPM' 

          bayesian: 1 

               fit: {[@(x)x.^2]  [@(x)x]  [@(x)1]} 

        ytransform: @(y)y 

         threshold: [-10.9743 0.5743] 

     thresholdtype: 'pdf' 

         threshcon: 0.9500 

              npop: 1000 

          noisevar: 2.0934 

     bayesianprior: [2x3 double] 

     allownegative: 0 

 

% Monitoring system residuals for the test runs are obtained from the     % 

% previously developed models                                             % 

tst_g1 = cell(size(tst)); 

for i = 1:length(tst) 

    tst_g1{i} = tst{i}(:,Groups{1}); 

end 

res_tst = residgen(model,tst_g1); 

  

  

%% 

  

% Finally, the models are used to estimate the RUL of each test run with  % 

% each model                                                              % 
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tst_par = paramgen(param,res_tst); 

TypeIIIOut = rungpm(typeIII,tst_par); 
RUL_typeIII = TypeIIIOut.RUL; 
  

%% 

  

MAPE_typeIII = nanmean(abs(RUL - RUL_typeIII)./RUL*100); 

  

figure; hold on 

plot(RUL,RUL_typeIII,'bo'); 

plot(0:200,0:200,'r--'); 

hold off 

box 

xlabel('Actual RUL (cycles)') 

ylabel('Estimated RUL (cycles)') 

title(['Type III RUL Estimation Error : MAPE = ' num2str(MAPE_typeIII)]) 

 

 

Figure 10.3-8: Type III RUL Estimation Error 

%% Type III GPM with Bayes 

  

% It is possible to combine a Type III GPM with a Type I or Type II prior 
% model. This reduces the uncertainty of the RUL estimates by decreasing 
% uncertainty on the path parameters.  
  

TypeIIIBOut = runGPM(typeIII,tst_par,typeI); 

RUL_typeIII_B = TypeIIIBOut.RUL; 
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MAPE_typeIII_B = nanmean(abs(RUL - RUL_typeIII_B)./RUL*100); 

  

figure; hold on 
plot(RUL,RUL_typeIII_B,'bo'); 
plot(0:200,0:200,'r--'); 
hold off 
box 
xlabel('Actual RUL (cycles)') 
ylabel('Estimated RUL (cycles)') 
title(['Type III w/ Bayes RUL Estimation Error : MAPE = ' 

num2str(MAPE_typeIII_B)]) 

 

10.4 Summary: 

To summarize this section, several data sets were employed to test and validate the diagnostic and 

prognostic algorithms. The first data set consisted of simulated data that was used to test and 

validate the Bayesian transitioning algorithms. These transitions are used in prognostic model 

development, where the transitions are from Type I/II to Type III modeling. The reason for using 

these transitions is that with the Bayesian priors used along with the actual data there can be a 

large reduction in the error and uncertainty of the RUL estimates of the model. It was found that 

using Bayesian updating with prognostic parameters generated using OLS had the greatest effect 

in reducing the overall error in modeling. Next, the pump impeller degradation data was used to 

test and validate the prognostic model algorithms. The examples provided the needed information 

and code to generate each of the three prognostic model types. All models were validated by 

leaving one of the cases out, developing a model on the remaining cases and test on the left out 

case. The results show that with the inclusion of known operating conditions or degradation 

parameters of the system can reduce the overall error in RUL estimates than just by using a Type 

I model. Last, the PHM challenge data was used to further validate these prognostic algorithms. 

The modeling results for this data set are well documented in the PEP toolbox users' manual. 
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11. Concluding Remarks and Summary 
This research covered a wide array of topics and experiments concerning the advancement of 

lifecycle prognostic modeling. Investigations ranged from the sources of uncertainty in modeling 

and how to best deal with them; when and how new data would be expected to become available 

at the different stages of a system’s lifetime. As part of this, tools for utilizing this information in 

a concise manner were developed to aid future researches as well as industry and production 

managers in creating and maintaining the highest levels of quality, safety, and reliability within 

their facilities.  

Where traditional prognostic analysis relied on separate styles of models, each based on the 

primary  level of information expected to be available about a system throughout its lifetime, the 

algorithms and techniques presented in this paper provide clear methods for moving between 

different models as further information becomes available during the lifetime of a system. This 

allows for sensible expectations and decisions about a system to be made at any stage of that 

system’s lifetime: prior to deployment, initial operations and startup, regular running operations, 

and especially near the expected end of component lifetime. Prior to the initial deployment, no 

specific information or expectations from a system are likely to be available. However, there must 

still be informed decisions made as to the expected operations of this system. During this phase, 

models must rely exclusively on information about prior populations of the system of predictive 

physics of failure probability models. Once information about the expected system environmental 

and duty stresses becomes available, this can be used to augment any population or physics based 

model predictions, updating them from general populous to reflect the most pertinent subset, 

effectively shifting any estimations on lifetime while also lowering uncertainty. During most 

normal operations and prior to any incipient fault or degradation detection, these models may 

provide the most reliable prognostic predictions. This is also the time when online monitoring of 

systems and components becomes usefull for the detection on these incipient faults. After a fault 

or anomaly has been detected, the final phase of prognostic modeling can be used to extrapolate 

or otherwise predict the progression of this failure to some point where the system will no longer 

meet design or safety criteria. Seamlessly incorporating all the information from previous 

predictions as well as this most up to date online information gives the most complete picture or a 

system’s reliability so that logical, informed, and experienced decisions can be made. 

The tools and algorithms developed to implement these procedures and models were put into a 

comprehensive MATLAB toolbox known as the Process and Equipment Monitoring and 
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Prognostics (PEMP) suite. Spanning all the phases on modeling, detection, and prediction during 

a system’s lifetime, this suite of tools includes both inline algorithm coding tools and an 

interactive Graphical User Interface (GUI) for data analysis and prognostic model creation. These 

tools were tested on and validated with both simulated data and data collected from a wide array 

of physical accelerated aging test bed facilities located both at the University of Tennessee and 

across the US.  

Three different test bed setups were constructed at the University of Tennessee, and utilized 

during the testing phases of this project. This first was an electric motor accelerated aging rig 

designed to thermally stress 5 horsepower motors. Over ten motors were cycled and aged to 

failure during the course of this project. Although most failures did not precipitate from the 

desired internal electrical failures, a testing procedure to help better in sure these types of failures 

in future experiments was developed and successfully tested.  

Additionally, the university developed both a heat exchanger fouling experiment, and a pump 

impeller aging test facility. Data collected from both of these setups was instrumental in verifying 

and validating the tools and algorithms created over the course of this project. Examples and case 

studies of this data both with traditional analysis methods and those contained within the PEMP 

suite are presented in both the body and appendices of this document. 

The validation of the PEMP suite of tools merited the investigation of existing forms of model 

performance metrics. This ultimately culminated in the development of a more flexible and 

intuitive set of model performance metrics that can quickly be used to compare and quantify the 

performance of any prognostic model. These new metrics have been publicly published and are 

available for general justification of model acceptance comparative analysis between models. 

As the science of prognostics continues to develop and gain acceptance in more and more 

industries, proper handeling and presentation of data becomes ever more crucial. Having tools 

and people able to quickly and reliably analyze data is paramount for any complete reliability 

regeme. This project has developed tools and helped to train over eight students in the field of 

reliability and prognostics.  
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12. Future Work: 
After the completion of this project, clear indications of the next stages of research and 

development present themselves. Firstly, supplementary development and validation of the PEMP 

suite toolbox on additional data sets from both controlled experimental test beds and eventually 

true industry data would be invaluable to the furthering of this work. While collection and testing 

of the algorithms on small to medium scale test bed applications is incredibly useful for 

verification of fault detection and isolation algorithms, it will eventually require interfacing with 

actual plant systems and data in order create a fully evaluated, deployable system ready for online 

plant operations. 

Other, more specific paths of future work include the further algorithm and toolset development 

via such additions as the implementation of models with separate forms of reliability indication 

within the PEMP suite. Currently, most models are set to indicate a quantitative value of 

Remaining Useful Life (RUL) with some measure of uncertainty associated with it in terms of 

operational cycles (such as minutes, hours, days, etc.). In certain cases, it might be more useful 

and informative to provide the optional indications of either direct percent of life consumed at a 

given time, or the probability of failure at some query time. These additional measures of 

reliability could help to better inform operators when making operational decisions about a 

system. 

Additional options for incorporating event frequency and/or qualitative forms of expert provided 

information beyond what is directly sensed on the system would also provide a unique 

opportunity to advance the algorithms and utilize the fullest amount of information available. 

Often, expert operators fill out operations and maintenance logs or qualitative performance 

evaluations that could contain pertinent information related to the stresses and overall health of 

the system. If future incorporated toolsets could extract important patterns and information from 

these or similar sources and quantify them into useful indicators, this information could be useful 

in augmenting existing predictive models and evaluation tools to give the most robust and 

accurate picture of a system’s overall health. Automated methods for the extraction and 

evaluation of these patterns, such as a bag of words technique, should bean integral part of this 

toolset.  

Beyond the one-dimensional sets of signals typically associated with systems’ sensor logs, ways 

of evaluating multidimensional sensor or signal inputs, such as thermal camera imaging, joint 



231 
 

time-frequency mapping, or general video imaging of component operations should be 

incorporated into a complete prognostic and reliability modeling suite. These interrogative and 

evaluative methods produce a series of multidimensional information maps that relate specifically 

to a single (or multiple) sensed system or component. These require specialized techniques for 

pertinent feature identification, extraction, and modeling. Combining this information into models 

built around multivariate collections of one-dimensional variables may ultimately require the 

collapse of these multidimensional inputs into a similar series of one dimensional indicators. 

Future work should also center on developing an automated, robust, and reliable algorithm for 

accomplishing this that maximizes the pertinent information and also minimizes transference of 

unnecessary information or noise. Areas of initial investigation for this topic could include image 

processing and compression techniques such as independent component analysis or in the case of 

time frequency maps, peak identification and tracking. 

When considering the motor degradation experiment, there are some modifications that could be 

made to the testing plan to obtain a larger set of useful degradation information. The first is to use 

an overloading method to degrade the motors; using thermal and moisture cycles in the first and 

second years of the experiment did not yield the types of failures as expected. When using the 

thermal degradation method it was seen that the main failure mode was in the wire connections to 

the stator, this caused the motors to fail even though several more tests could have been run if this 

fault had not occurred. It also did not provide any prognostic information.  Our goal was to see 

stator and rotor winding failures, but we were not able to force those failure modes. The 

overloading method heats the motor during operation by increasing the load output on the resistor 

bank. This forces the heat source to be inside the windings, where the degradation is desired. The 

data analysis on the two motors that utilized this degradation method showed that there were 

noticeable changes in the power output of the motor due to increased temperature and resistance 

from the overload conditions. This type of profile was not seen in the earlier test runs because the 

motors because the wire connections to the stator shorted out before this desired failure could 

occur. Future tests could have motors run at different overload conditions for extended periods of 

time to determine if internal wiring failure modes might manifest earlier in the data or extracted 

features so that refined RUL estimates could be obtained. We are proceeding with overload tests 

with funding from Dr. Jamie Coble’s startup package.  The impact of this for a real world 

application is that maintenance strategies can be modified so that extended downtime, repair costs 

or injury can be avoided. 
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There are also modifications that could be made to the pump impeller experiment that were not 

used during the project. During the experiment it was seen that there was a wide range in the 

failure times even though most impellers came from the same batch and all were thermally aged 

in the same manner. In the future, the thermal aging procedure could be modified to test impellers 

that are aged at a slightly lower temperature but for extended periods of time. Using this modified 

thermal aging plan might cause the failures to occur in roughly the same time span instead of the 

wide variance that was observed. Additionally, different impeller materials such as nitrile could 

be used to see if the same failure modes and features are seen as in neoprene. This would serve to 

create a database of degradation information for several impeller types which could be used in a 

variety of industries.  Lastly, difeent types of pumps or difeent ageing mechamisms could be 

utilized. 

 Another useful future modification for an impeller aging test bed would be to add a blockage into 

the inlet line along with the blockage in the outlet line that was used during the project. The 

application would be to determine if the additional blockage or combination of line blockages 

reduces or increases the expected time to failure. Also, the correlations between the different 

blockages could be examined to optimize a testing plan. Finally, different fluids at varying 

temperatures and with additives could be examined to determine their effect on failure time. As in 

the motor degradation experiment, accelerated aging using a variety of conditions helps to 

develop a database of degradation data with a wider range of applicability for prognostic 

modeling and maintenance planning.   

For the heat exchanger, possibly the most important future research needs to involve the 

broadening of the training and testing data over different flow rates, including hybrid cycles that 

operate at multiple flow rates over time. To improve lifecycle prognostic model results, additional 

data at the current flow rates should also be taken to improve model robustness to different 

operating conditions. One area of future work that needs focusing is the redesign of of the heat 

exchanger construction. Research should be done on an updated test bed setup that reduces 

uncontrolled variables such as cold water input temperature, hot leg pressure, and clay mixture 

concentration.  

Another area of future research that should be investigated is the construction of a natural flow 

loop accelerated degradation test bed. The impact would be a better inderstancing of natural 

circulation loops such as those in NuScale and inherently safe emergency cooling systems. Heat 

exchanger operation and data relationships are significantly different for forced and natural 



233 
 

circulation flow. The degradation paths seen in a natural circulation loop will likely differ 

substantially from those that were measured in the current heat exchanger test bed. Because there 

is no artificial circulation, the fouling of the heat exchanger tubes could potentially greatly reduce 

flow as the particulates accumulate within the natural circulation heat exchanger. These unique 

degradation paths would require a new lifecycle prognostic model. Lastly, future efforts should 

be focused on the aggregate bootstrapping of residual/signal values from competing models to 

serve as a variance reduction technique. To achieve this, several residuals of the same type from 

different models (such as the hot leg inlet temperature across 4 models) would be combined in 

some way such as linear merging or averaging. This modified residual could then be used with 

other residuals to build the prognostic parameter. This helps to reduce variance across models.  

The results of the General Path Model using Type I and Type II priors has already shown great 

promise in reducing the uncertainty of RUL estimates resulting from sensor noise and 

degradation model. The Bayesian framework developed and implemented covers most instances 

of Type I to Type II and Type III transitions. However future research can explore additional 

methods for combining multiple types of prognostics with and without the use of Bayesian 

statistics. In developing more Bayesian methods, additional exploration could be done on 

controlling the weights of the prior to more suitably stabilize RUL estimates for the GPM. For 

example, a more careful consideration of the weight of a Type I prior can be made in relation to 

the amount of data that exists for the GPM. For datasets that involve very long life times, and thus 

large amounts of GPM data, the Type I prior can be quickly overpowered and result in not much 

change from using only the GPM. In such instances the Type I prior must be made stronger to 

express more confidence relative to the initial life of the system. The other extreme can also be 

considered. If the Type I prior is weighted too heavily, the advantages of the GPM can be lost. As 

such, expert knowledge of the system and the mathematical subtleties of Bayesian statistics are 

required for a useful implementation of the Bayes transition methods. However, this ambiguity 

must be addressed in the context of empirical modelling. In other words, there should be better 

methods of developing such finely tuned prior weights that depend more on the data than on the 

user. Such methods can involve simple solutions such as a single equation, or set of equations, 

that can be applied to any dataset that would balance out the prior with the posterior. Or a set of 

equations that requires one or two user inputs, such as a basic confidence comparison of the Type 

I to the Type III, i.e. if there exists a large amount of Type I information, but relatively little is 

known about the Type III GPM of a system, then there should be much more confidence in the 

Type I prior. Conversely if a system's RUL can be accurately obtained through the GPM, then 
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there is little need to express confidence in the prior, other than in the beginning of life. Other 

advanced methods can involve optimization methods on known failures that will select a prior 

weight that minimizes the RUL error based on the beginning of life, end of life, and the number 

of data points that exist in one lifecycle.  
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14. Appendix 1: Additional Heat Exchanger Figures 

14.1 Plot of Features 

 

Figure 14.1-1 Example plot of major features for a single cycle after cleaning 

14.2 Summary of Signal Indices  

Table 14-1 Table of signal indices and their corresponding signal titles 

Signal Index Signal/Feature 

1 Hot Leg Inlet Temperature 

2 Hot Leg Outlet Temperature 

3 Cold Leg Inlet Temperature 

4 Cold Leg Outlet Temperature 

5 Hot Leg Flow Rate 

6 Cold Leg Flow Rate 
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7 Hot Leg Inlet Pressure 

8 Hot Leg Outlet Pressure 

9 Delta Hot Leg Temperature 

10 Delta Cold Leg Temperature 

11 Hot Leg Heat Rate 

12 Cold Leg Heat Rate 

13 Log Mean Temperature Difference 

14 Hot Leg Overall Heat Transfer Coefficient 

15 Cold Leg Overall Heat Transfer Coefficient 

 

 

14.3 Code for LabView Extraction 

function [FinMat] = LVextract(directory,depvar) 

% function to strip data from LABVIEW excel files and combine into a final 

% matrix, and displays the variable names by column.  

%---To pass 

%   directory use- 

%                       directory = uigetdir; 

% 

% which will allow user to GUI to the directory containing all excel files. 

% 

% ---depvar is the number of dependant variables not to exceed 25. 

% 

%                                         By:  Zach Welz 

%                                         University of Tennessee Knoxville  

  

disp('Warning: Variable names are taken from last file in directory.') 

 a = 1; 
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num = 1; 

old_directory = pwd; 

files = dir(fullfile(directory, '*.xlsx')); 

fileIndex = find(~[files.isdir]); 

for i = 1:length(fileIndex) 

ins = 1;    

fileName = files(fileIndex(i)).name; % creates file name 

cd(directory); % changes directory to where excel copies are (specified by the user) 

%% Get length of sheet 2 

sheet = 1; % length is listed on sheet 1 

xlRange = 'D9'; % in cell D9 

sheetlength1 = xlsread(fileName, sheet, xlRange); % gets cell D9 information 

sheetlength2 = sheetlength1 + 1; % accounts for the header line 

%% Get data from sheet 2 

sheet = 2; % data in contained on sheet 2 

intro = 'B2:I'; % beginning of cell range 

celldef = [intro,num2str(sheetlength2)]; % completes cell range string 

xlRange = celldef; % defines final cell range 

sub = xlsread(fileName, sheet, xlRange); %strips data from file 

%% Get headers from sheet 2 

var1 = 'A':'Z'; 

spread = ['B1:',var1(depvar+1),'1']; 

[~, ~, firstrow] = xlsread(fileName, sheet, spread); 

%% store data in full matrix 

b = a + sheetlength1 - 1; 

if num == 1 

   for j = a:sheetlength1 

      for k = 1:depvar 

        FinMat(j,k) = sub(j,k); 

      end 

   end 

else 

   for j = a:b  

      for k = 1:depvar     
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        FinMat(j,k) = sub(ins,k); 

      end 

     ins = ins + 1; 

   end 

end 

num = 2; 

olda = a; 

a = sheetlength1 + olda; 

end 

 

%% Clean Data 

filtbinwidth = inputdlg('Input the desired bin width for cleaning.'); 

filtbinwidth = str2double(cell2mat(filtbinwidth)); 

FinMat = medfilt1(FinMat,filtbinwidth); 

% FinMat = cleandata(FinMat); % use if prefer cleandata cleaning method 

%% Show Resulting Variabels 

va = 1:depvar; 

for i = 1:depvar 

   list{i} = [num2str(va(i)),'      ',firstrow{i}]; 

end 

msgbox(list) 

 cd(old_directory); 

  

return 
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15. Appendix 2: PEMP Suite Users guide 
Welcome to the Process and Equipment Monitoring and Prognostics GUI. What follows is an 

example walk through showing some of the functionality of this software. 

15.1 STEP 1 – Import and Separate Data 

All data must be preloaded into the MATLAB workspace with the general form that row index 

indicates observation or case number and column index indicates signal number oradditional data 

segemts.  

In this example the data is divided into 3 variables:  

 UnFaulted – This cell contains 50 example cases of falut free runs with this system.This 

will be used to create the monitoring model. 

 FailureData – This is a cell that contains 50 separate cases of the system recorded from 

beginning of life to failure. This will be used to develop the prognostic model. 

 LifeTimeData – This is a matrix with the total length of 50 additional systems were in 

operation before failure is time units similar to those of the previous two variables. This will be 

used to augment and enhance the prognostic model. 

The final variable in the workspace is the QueryData. This is data in a similar format to the 

FailureData variable and will be what the models will be run on after fully constructed. 

Each variable is shown in Figure 15-1. Also in this figure is shown the internal structure of the 

one of the cells. In this case the system has 7 data signals represented by the 7 columns in each 

cell. These signals correspond to 3 electrical signals, 2 flow sensors, and 2 vibration signals on a 

simulated recirculation pump flow loop. 
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Figure 15-1 : Beginning MATLAB Workspace for GUI 

Once the data is properly loaded into the workspace then the Start_Here script can be run 

regardless of the working folder or directory. If a project structure has previously been created, 

then the only thing necessary to load to the work space in addition to the query data is the project 

variable. Each individual project created is unique to the data from the system used to create the 

project models. 

15.2 Step 2 – Create a New Project 

In Figure 15- is the initial panel view of the PEMP Suite GU interface which can be activated by 

running the Start_Here script after adding it and all necessary functions to the MATLAB working 

path. 
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Figure 15-2:  PEMP Suite GUI Initialization 

Once this has been accessed, the next step is to either load the project of interest from the 

workspace by selecting it from the Project Name dropdown menu, or to click the Create New 

button.  Note that on different operating systems the button colors my not be the same as shown 

in the figure above. 

After clicking on the Create New button, a new dialog panel will appear as shown in Figure 

15.2-. This panel allows for the naming of a project as well as the specification and input of the 

data needed to create both the signal prediction and the prognostic lifetime prediction models that 

will be used to make up the PEMP Suite GUI project. Under the Unfaulted System Signals 

menu, select the workspace variable that contains the fault free data that encompasses the 

expected operating ranges of the system data.  
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Figure 15.2-3: Create New Project Panel - Monitoring Model Data Input 

Next, as shown in Figure 15-, select the method for dividing the data within this variable into 3 

further sub-groups that will be used to build, test, and validate the model respectively. 

 

Figure 15-4: Create New Project Panel - Monitoring Model Data Division Method 

Similarly, shown in Figure 15-, menus will appear that allow you to input and divide the 

workspace variable that contains observed runs to failure of the system signal sets which will be 
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used to create the prognostic model. A vector containing a distribution of known failed lifetimes 

can also be input in this panel to augment the lifetime predictive model. 

 

Figure 15-5: Create Project Panel - Prognostic Model Data Inputs 
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15.3 Step 3 – Build Signal Monitoring Model 

After inputting all the appropriate data, the next step is to de-select the Create New button and 

select the Signal Model button. This will bring up the signal model construction panel as shown 

in Figure 15.3-. 

 

Figure 15.3-6: Signal Monitoring Model Creation Panel 

This panel controls all the options for feature select, model specification, residual monitoring and 

fault detection for the systems signals. For this example, not all the features are explored, but the 

primary outline of model construction is explored. 

This first step in model construction is to group highly correlated or related features extracted 

from various signals into sub models. This can be done manually by selecting the features of 

interest in the dropdown menus as shown in Figure 15-, or by pressing the Auto Group button. 

Each feature is processed in windows governed by the Window and Overlap input boxes above 

the interactive signal feature extraction matrix. 
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Figure 15-7: Signal Monitoring Model Creation Panel - Signal Feature Selection 

This interactive signal feature extraction matrix allows not only for feature extraction 

specification but also allows for scaling, filtering, and naming of individual signals. By selecting 

the Edit All Signals Together radio button, any change in the matrix applied to one signal is 

similarly applied to each other signal. The Input Type sub box in this matrix allows for defining 

a signal as “Normal”, ”Time”, ”Stressor”, or “Not In Group”. By default, all signals are 

considered “Normal”, indicating that they are both an input and a requested output of the model. 

The first (highest) Time signal indicated in the matrix will be used to define the online timing of 

the signals within the matrix. By default the observations are assumed to have uniform unit 

spacing. A denotation for a signal as “Stressor“ indicates that this signal is an input to the model, 

but is not to be considered as an output. Finally, signals listed as “Not In Group” will not be 

considered as inputs or outputs of the current sub model and be ignored.  Changing between sub 

models can be done with the Select Group dropdown menu. 

Once all the features and signal processing requirements have been properly specified, clicking 

the Get Features button will process the model input signals and display them in the lower plot 

as shown in Figure 15-. 
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Figure 15-8: Signal Monitoring Model Creation Panel - Feature Extraction 

The lower output chart also will indicate the correlation coeffecents between the system signal 

features. 

After the features have been extracted, the type of model for the active sub model can be 

seleccted as indicated in Figure 15-. 

 

Figure 15-9: Signal Monitoring Model Creation Panel - Model Specification 
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These models may take some time to create depending on the model specification and the 

operating platform, but shortly after clicking the Build Group Model button a wait-bar should 

appear. 

 

Figure 15-10: Signal Monitoring Model Creation Panel - Model Construction 

A graph of the model output as well as a chart of signal sensitivity within the model will appear 

after the model construction is complete as shown in Figure 15-. 

The final phase of the process signal monitoring model construction is to specify the type of 

residual monitoring and fault detection. These will be used to specify the degradation monitoring 

inputs for the lifetime prognostic model in the next step. Figure 15- shows an example of these 

residuals, which are the processed difference between the model output value of the signal 

features and the actual signal feature value. 
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Figure 15-11: Signal Monitoring Model Creation Panel - Residual Construction 

The fault alarms are also based on these calculated residuals and are shown in Figure 15-. 

 

Figure 15-13: Signal Monitoring Model Creation Panel - Fault Alarms 

Alarm statistics broken down by signal can be found in the displayed output box. 
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15.4 Step 4 – Prognostic Lifetime Prediction Model Creation 

After creating and finalizing each of the sub models in the Signal Modeling Panel, deselect the 

Signal Modeling button and select the Lifetime Model button to activate the prognostic model 

construction panel seen in Figure 15-.  

 

Figure 15-13: Prognostic Model Creation Panel 

From this panel a failure time distribution model can be specified and created as shown in Figure 

15-. This model will be used to create time to failure predictions prior to any initiating fault 

detection in the system as indicated by the Signal Model. It can also be used throughout the 

lifetime of the query to augment the general path model predictions. 
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Figure 15-14: Prognostic Model Creation Panel - Failure Distribution Model Construction 

 

Next a method for combining the system signal model residuals into a single indication of system 

degradation must be selected an implemented as in Figure 15-. 

 

Figure 15-15: Prognostic Model Creation Panel - Finalized Prognostic Parameter 

Some of the methods, particularly Genetic Algorithms and Gradient Descent, can by 

computationally intensive and therefore time consuming. 
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Once the system degradation parameter has been formed, the general path model form can be 

specified and implemented. Figure 15- shows the fitted pathways of this process overlaid with the 

corresponding degradation parameter. 

 

 

Figure 15-16: Prognostic Model Creation Panel - General Path Model Construction 

The last step of project construction is to select how to merge the final output from both the 

general path model and the time to failure distribution model. Once that is done, as shown in 

Figure 15-, the performance of the model on the pre-selected validation cases should be reviewed 

to indicate performance. 
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Figure 15-17: Prognostic Model Creation Panel - Merge Predictive Models Outputs 

Individual cases of interest may also be reviewed for each stage in the prognostic model 

development process as indicated by Figure 15.4-1. 

 

Figure 15.4-1: Prognostic Model Creation Panel - Examination of Single Case 

15.5 Step 5 – Run Query Data 

After completing construction of the PEMP project, the Run Project button becomes active and 

brings up the panel shown in Figure 15-. 
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Figure 15-19 - Run Query Data Panel 

After selecting an running the query data that was pre-loaded into the MATLAB workspace, the 

GUI presents an easily manages interactive way to navigate through the output of the various 

models within the project. Figure 15- shows an example of the model residuals and fault alarms 

as well the estimations for both the Lifetime Distribution model and the general path model 

(GPM) and their associated uncertainties. 

 

Figure 15-20: Run Query Data Panel - Monitoring Residuals and Prognostic Predictions 
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Further details of each of the models can also be gained as shown in Figure 15-, which contains 

both the process model directly predicted output and independently, the fitted path of the general 

path model. 

 

Figure 15-21: Run Query Data Panel - Signal Model Predictions and General Path Model 
Predictions 

 

Figure 15-22: Run Query Data Panel - Signal Model Residual Contributions for Fault 
Identification 
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Another important feature of the GUI is that is can be used to indicat the realitive contribution 

each signals’ residuals are providing to the overall degredation parameter used by the general 

path model. An example of this is provided in Figure 15-. This can be potentially helpful fault 

identification or classification. 

Lastly, the PEMP Suite GUI saves a model output structure to the MATLAB workspace for easy 

use in other proograms or for further custom analysis. Figure 15- show an example of this.  

 

Figure 15-23: MATLAB Ending Workspace and Query Data Output Variable 

The final output structure follows the naming scheme of the project name followed by a 

“_output” indicator. 
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16. Appendix 3: PEM and PEP Users Guide 

16.1 Introduction  

The Process Equipment Monitoring (PEM) and Process Equipment Prognostics (PEP) Toolboxes 

are MATLAB-based tools that facilitate condition monitoring and fast prototyping of empirical-

based prognostic models developed at the University of Tennessee Nuclear Engineering 

Department.  The goal of this User’s Guide is to present the pertinent background information 

and basic syntactic information needed to employ the Toolboxes. 

This guide begins by providing an introduction to the Toolboxes, including an overview of the 

toolbox architecture and requirements for employing the available functions.  The relevant 

background of prognostics and the empirical techniques available in is summarized with 

appropriate references for the interested reader to find additional information.  The algorithms 

and techniques employed in this toolbox are all openly available in literature.  PEM and PEP do 

not employ any protected or patented material, but instead provides a foundation for building 

empirical prognostic models for fast prototyping and model comparison.  Appendix A includes an 

example application of the PEM toolbox, discussed later, and PEP toolboxes for health 

monitoring of the turbofan engine data presented in the 2008 PHM Challenge.  

16.1.1 System Requirements 

The system requirements for the Toolboxes are based on the requirements of MATLAB 7.11, 

which was used for development.  Although some functions will execute properly on previous 

releases of MATLAB, it is suggested that that the Toolboxes be run on MATLAB 7 to ensure all 

functions execute as intended. 

16.1.2 Toolbox Requirements 

The PEM and PEP Toolboxes employ functions from several existing MATLAB toolboxes.  In 

order to use all functions, the following toolboxes must be available: 

1) N
eural Networks Toolbox release 4.0 or later 

2) W
avelet Toolbox release 3.0 or later 

3) S
tatistics Toolbox, release 7.4 or later 

4) S
ignal Processing Toolbox, release 6.14 or later 
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5) G
lobal Optimization Toolbox, release 3.1 or later 

16.1.3 Toolbox Architecture 

The current architecture of the PEP Toolbox, shown in Figure 16-1, includes functions supporting 

each of the three types of prognostics, which are discussed in the next chapter.  Each of these 

modeling algorithms includes methods for estimating the 95% uncertainty interval of the 

remaining useful life (RUL) estimates.  Additional functionality is available to support model 

development.  Each of the available functions and their use is discussed in later chapters.   

 

Figure 16-1: PEP Toolbox Architecture 

16.1.4 Release Notes 

This documentation has been adapted from the PEP version 1 users guide and PEM help files, as 

well as updates to the PEP since its initial release. The primary motivation for this revised version 

is as part of a contract between the University of Tennessee's Nuclear Engineering Department 

and the Nuclear Energy University Programs as part of the Department of Energy.  

The guide includes background information on a complete prognostics paradigm, which includes 

monitoring, fault detection, and multiple prognostics technique depending on information 

available. It also includes Bayesian transitions between prognostic types.  

The core functions of the PEP Toolbox facilitate conventional reliability models, Markov chain, 

shock, proportional hazards, general path, and particle filtering prognostic models.  It also 
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includes methods for estimating the RUL uncertainty for each model type, commonly based on 

Monte Carlo procedures.  Algorithms are included to identify prognostic parameters from 

multiple data sources for Type III models.  All methods and algorithms employed in the PEP 

Toolbox are widely available in the open literature; as such, there is no alternate research version 

of the PEP Toolbox as there is in the PEM toolbox. 
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16.2 Background 

Prognostics is one component of a complete health monitoring system which also includes system 

monitoring, fault detection, diagnostic modules, and operation and maintenance planning as 

shown in Figure .  Full health monitoring systems, also called Condition Based Maintenance 

(CBM) systems, are the focus of much research.  Data collected from a system of interest is 

monitored for deviations from normal behavior.  Monitoring can be accomplished through a 

variety of methods, including first principle models, empirical models, and statistical analysis 

[Hines et al., 2006].  The monitoring module can be considered an error correction routine; the 

model gives its best estimate of the true value of the system variables.  These estimates are 

compared to the data collected from the system to generate a time-series of residuals.  Residuals 

characterize system deviations from normal behavior and can be used to determine if the system 

is operating in an abnormal state.  In Figure  below, the residuals have the same shape and fail at 

similar values thus they can be used as a prognostic parameter. 

 

Figure 16-2:  Complete Health Management System (Coble & Hines 2008) 
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Figure 16-3: Example of Residuals used as a Prognostic Parameter 

A common residual test for anomalous behavior is the Sequential Probability Ratio Test (SPRT) 

[Wald, 1945].  This statistical test considers a sequence of residuals and determines if they are 

more likely from the distribution that represents normal behavior or a faulted distribution, which 

may have a shifted mean value or altered standard deviation from the nominal distribution.  If a 

fault is detected, it is often important to identify the type of fault; systems will likely degrade in 

different ways depending on the type of fault and so different prognostic models will be 

applicable.  Expert systems, such as fuzzy rule-based systems, are common fault diagnosers.  

Finally, a prognostic model is employed to estimate the Remaining Useful Life (RUL) of the 

system or component.  This model may include information from the original data, the 

monitoring system residuals, and the results of the fault detection and isolation routines.   By 

applying the entire suite of modules, one can accomplish the goals of most prognostic systems: 

increased productivity; reduced downtime; reduced number and severity of failures, particularly 

unanticipated failures; optimized operating performance; extended operating periods between 

maintenance; reduced unnecessary planned maintenance; and reduced life-cycle cost.   

Development of an integrated health management system can be daunting because of the high 

level of complexity involved in identifying appropriate algorithms at each stage. To support this, 

a suite of MATLAB‐based toolboxes have been developed at the University of Tennessee 

PROaCT lab with a range of monitoring, fault detection and prognostic capabilities. The Process 

and Equipment Monitoring (PEM) toolbox was developed to facilitate auto ‐ associative 

modeling of process and system data, and fault detection [2]. The PEM toolbox includes auto‐
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associative kernel regression models, auto-associative neural networks, and linear regression 

models for system monitoring and sequential probability ratio test and error uncertainty limit 

monitoring fault detection methods. The results of both of these modules, as well as an 

independently developed diagnostic module, if available, can be used to facilitate prognostic 

analysis. The Process and Equipment Prognostics (PEP) toolbox is a MATLAB‐based toolbox 

developed to aid in development of empirical prognostic models of each of the three types. The 

PEP toolbox is designed to integrate with the previously developed PEM Toolbox. The results of 

process monitoring and fault detection produced by the PEM toolbox as well as the original 

system data are utilized by the PEP toolbox to make RUL predictions for the system, as shown in 

Figure . 

 

Figure 16-4: PEM and PEP Toolbox Flow Chart 

The purpose of the PEP toolbox is to provide a base set of tools to facilitate prognostic model 

development. A myriad of prognostic algorithms have been developed which use a variety of 

information sources, models, data processing algorithms, etc. Typically, prognostic model 

development depends highly on the expertise of the developer. The PEP toolbox reduces the 

development burden on the system designer and facilitates the rapid development and quantitative 

performance characterization of competing models.  

A variety of algorithms have been developed for application to specific systems or classes of 

systems. The efficacy of these algorithms for a new process depends on the type and quality of 

data available, the assumptions inherent in the algorithm, and the assumptions that can validly be 

made about the system. As such, these prognostic algorithms can be categorized according to 

many criteria. One proposed categorization is based on the type of information used to make 

prognostic estimates; this results in three classes of prognostic algorithms, as shown in Figure.  
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Type I prognostics is traditional time to failure reliability analysis; this type of prognostic 

algorithm characterizes the expected lifetime of an average system operating in a historically 

average environment.  Type II methods characterize the average life under specific usage 

conditions.  They can be used if operating condition stressors, such as load, input current and 

voltage, ambient temperature, vibration, etc., are measurable and correlated to system 

degradation.  Algorithms in this class include specific formulations of the Markov Chain model, 

shock model, and proportional hazards model.[Hines, 2007]  The final class of algorithms, Type 

III, or condition‐based prognostics, characterizes the lifetime of a specific unit or system 

operating in its specific environment; these are the only truly individual-based prognostic models.  

These methods attempt to trend some measure of degradation, either directly measured from the 

system or inferred from other measurements, to a pre-defined failure threshold.  The PEP toolbox 

includes algorithms representing each of the three categories.  These algorithms are described in 

broad detail in the following sections.  References to more detailed discussions are given for the 

interested reader.  

 

Figure 16-5:  Prognostic Algorithm Categorization 

16.2.1 Monitoring 

Multiple monitoring techniques exist and are widely implemented for a plethora of reasons. They 

are useful for sensor calibration, condition monitoring, and are essential for fault detection and 

empirical prognostics. The Multivariate State Estimation Technique is one such proprietary 

technique used by Argonne National Laboratory [XX]. Other non-proprietary techniques are the 

Auto-Associative Neural Network (AANN) and the Auto-Associative Kernel Regression 

(AAKR). Auto-Associative refers to the access of data, using part of the data itself. This 

technique, while popularized through the use of AANNs, is valid in other applications.  
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The technical details of AANNs can easily be referenced in outside literature. In most cases, the 

key factor of AANN is the dimensional bottleneck between input and output. This bottleneck in 

the one or more hidden layers compresses information and can handle non-linear forms. The 

models are optimized usually by backpropagation of error based on training cases.  

16.2.2 AAKR	
The AAKR holds fault-free observation vectors, x, represented as a 1xk vector of k signals.  

 

These vectors are stored in memory matrix X of n observations.  

 

For every query vector input, z, into the AAKR, the distance between the query and each memory 

vector xi is calculated based on the Euclidean distance.  

 

Calculating the distance for each memory vector results in a nx1 matrix of distances d. These 

distances are transformed into weights based on the Gaussian kernel of bandwidth h.  

 

The expected output vector is then the weighted average of all memory vectors.  

 

If a is defined as the sum of all weights. Thus the two parameters to be optimized are the memory 

matrix and the kernel bandwidth.  

16.2.3 Performance	Metrics	
Once the model of preference is built, several performance metrics may be examined that help to 

quantify how well the model performs. The first metric, dubbed accuracy, can be more 

technically described as mean squared error. For N test observations, it is calculated as follows: 
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Because it is a measure of error, a lower value is desirable.  

The next two metrics are closely related and are called auto-sensitivity and cross-sensitivity. They 

are also alternatively referred to as robustness and spillover [XX]. In both cases, they can be 

thought of intuitively as how much each sensor resists a drift. The auto-sensitivity measures how 

a single sensor resists a drift input of the same sensor. The cross-sensitivity for how much a drift 

bleeds into other sensors. For drifted prediction , unfaulted prediction , drifted input 

, and unfaulted input x, the auto-sensitivity of each signal i, is 

 

 with the analogous cross-sensitivity as 

 

where j is the index of un-faulted variable under scrutiny. In both cases a value closer to 0 is 

desirable. This means that they resist drifts, and can correctly fix the inputs, leading to residuals 

that resemble the drift in magnitude. For sensor calibration purposes, it correctly shows sensor 

drifts. For prognostics, the residuals contain degradation information.  

16.2.4 Type I Prognostics 

Type I methods are a simple extension of traditional reliability analysis, based entirely on an a 

priori distribution of failure times for similar systems in the past.  Prognostic algorithms in this 

class characterize the average lifetime of an average system operating in historically average 

conditions; they do not utilize any information specific to the system at hand.  The main 

assumption made when applying Type I methods is that future systems will operate under similar 

conditions to those seen in the past and will fail in similar ways.   

Typically, Type I prognostic models track a population of systems over their lifetime and record 

only the failure time of each system.  In addition, the total runtime of each system which hasn’t 

failed at the end of the observation is recorded; this is called censored data and is also included in 

the analysis.  A probability distribution is fit to these runtimes to give an estimate of the time of 
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failure (ToF) distribution of the population.  The most common parametric model used in 

reliability analysis is the Weibull distribution.  This model is used because it is flexible enough to 

model a variety of failure rates.  The formula for the failure rate, λ(t), is a two parameter model 

with a shape parameter () and a characteristic life (): 

(t)  


t









1

 

and the failure probability density is given by: 

 

The two parameters in the Weibull model provide the modeling flexibility for components 

exhibiting an increasing failure rate (>1), a constant failure rate (=1), and a decreasing failure 

rate (<1).  With the correct choice of shape parameter, the Weibull distribution adequately 

models the exponential, normal, or Rayleigh distributions.  Examples of different shape 

parameters are given in Figure , where f(t) is the probability density of the Weibull distribution.  

Additional information on Weibull modeling is available in Abernethy [1996].   

 

Figure 16-6: Weibull Failure Distributions with Different Shape Parameters 

Most commonly, the Mean Residual Life (MRL) is used to estimate the RUL of a system using 

Type I prognostics.  For a unit of age t, the MRL method assumes that the remaining life is a 

random variable, and the MRL is given by the expected value of this random variable [Guess and 

Proschan, 1985]: 

MRL(t) 
1

S(t)
S(u)du

t




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where S(·) is the survival function and t is the current time.  The survival function is the 

complemet of the CDF and gives the probability of surviving beyond time t.  The MRL at time t 

can be calculated from either parametric or nonparametric distributions, which makes it 

particularly flexible for application to real world data.   

16.2.5 Type II Prognostics 

Type II prognostic algorithms incorporate information about the operating conditions of the 

system into estimates of RUL.  The PEP toolbox supports three Type II algorithms: Markov 

Chain models, shock models, and proportional hazards models.   

16.2.6 Markov	Chain	Models	
The Markov Chain model is based on the assumption that the next state which a system will 

occupy depends only on the current state; past states do not affect the probability of transitioning 

to a new state.  There are two types of Markov Chain prognostic models, which vary only in the 

information they use to simulate possible future states.  Type II Markov Chain models are 

composed of two models.   

The first model, called the environmental model, is a Markov Chain simulation which produces 

possible future operating state progressions based on transition probabilities seen in the past and 

the current operating state. The environment model is needed for making a prediction as to how 

the environment and operating conditions evolve in the future.  The environmental model is 

defined by the transition probability matrix, Q: 

Q 
p11  p1n

  

pn1  pnn















 

where  pij is the probability of transitioning from state i to state j.  Often this probability matrix is 

assumed to be static, but it is straightforward to extend the method to time-dependent or 

degradation level-dependent transition probabilities.  This model is used to simulate many 

possible future state progressions beginning at the current state. 

These state progressions are then mapped to a degradation measure, which is the second model 

necessary in the Type II Markov Chain algorithm.  The degradation measure is represented as a 

function of observable environmental conditions. To be useful for making a reliability prediction, 

the function should reflect the manner in which the environmental conditions affect the 

component reliability. Usually, environmental stressors tend to deteriorate the component 
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reliability in a cumulative manner. Hence, the function to relate the environment conditions to the 

prognostic parameter is commonly of a cumulative form:  

 

where Y(tk) is the degradation measure value at time tk, E(ti, ti+Δt) is the environmental condition 

observed at the time interval [ti , ti+Δt], and  g(.) is an appropriate function of environmental 

conditions.  

When the estimated degradation measure is found to cross some pre-defined threshold, failure is 

said to have occurred.  At each time of interest, many possible state progressions are simulated 

and mapped to degradation measures.  These measures are then used to define a time of failure 

(ToF) distribution for the system.  At each time of interest, many degradation paths are simulated, 

and a probability of failure distribution is estimated from the collection as shown in Figure.   

 
Figure16-7: Markov Chain Model PoF estimation 

In Figure 6, the blue lines are a collection of degradation pathways that grow towards the failure 

threshold over time.  If the actual degradation is measureable, indicated by a dark blue path, then 

the model can be used to simulate future pathways from the current state.  These are represented 

by the purple paths.  The collection of degradation paths can be used to predict the failure 

distribution.  The red distribution represents the population failure distribution while the blue 

distribution is the predicted distribution for the individual. [Hines, 2007]  
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16.2.7 Shock	Models	
The Markov Chain model is continuous in the time domain, but discrete in the degradation 

measure.  A more general formulation is the Shock model [Esary and Marshall, 1973; Gut, 1990; 

Mallor and Santos, 2003].  Instead of experiencing some known amount of shock at each random 

shock occurrence, the shock model allows for a shock of random size.  Shock models have three 

parameters that are estimated from historical data: time between successive shocks, t ~ Exp(),  

magnitude of the shocks, x ~ F(x), and the critical failure threshold. 

 

In this model, the time between random shocks is a continuous random variable, with the 

probability of shock often determined by the current degradation state, the operating conditions, 

or some combination thereof.  The size of the shock may be based on a single shock size 

distribution, or other features such as the current degradation measure, the operating condition, or 

other measures available from the system may define it.  Again, when the cumulative degradation 

measure crosses some pre-determined threshold, failure is said to have occurred; a probability of 

failure distribution is estimated from multiple simulated degradation measures. 

16.2.8 Proportional	Hazards	Models	
The Proportional Hazards (PH) Model developed by Cox [1984] merges failure time data and 

stress data to make RUL estimates.  The basic proportional hazard model assumes that the 

observed hazard rate is separable into a baseline hazard rate dependent only on time, , and a 

second function which is independent of time but dependent on operating conditions, called 

covariates, , where z is a numerical quantification of the covariates and  is regression 

parameters.  The model uses the covariates to modify the baseline hazard rate to give a new 

hazard rate for the system’s specific usage conditions:  

(t;z)  0 (t)exp  jz j

j1

q










 

Time, t 

Damage, D 

t1 

t2 

t3 

t4 

d1 

d2 

d3 

d4 

Figure 16-1: Shock Model Example 
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Therefore the observed hazard rate at any given covariate condition is always a multiple of the 

baseline hazard rate, , and a proportionality constant determined by the covariate function, 

, hence the name proportional hazards model.  Generally  is assumed to have some 

type of known functional form such as logistic, linear, inverse linear, or exponential.  Typically, 

and in the PEP Toolbox, this function is assumed to be exponential.  Generally  does not 

have any assumed functional form, and the PEP Toolbox utilizes a non-parametric, empirical-

based baseline hazard rate. 

Failure data collected at a variety of covariate operating conditions are used to solve for the 

parameters (j) using an ordinary least squares algorithm. The baseline hazard is the hazard rate 

when covariates have little or no influence on the failure rate.  A basic assumption of the 

proportional hazards model is that the effects of these covariates are multiplicative; this means 

that when the ratio of two covariates is evaluated, their hazard rates are proportional. 

In the following example, a tire is operated in one of three operating conditions: normal, off-road, 

and high slip.  To check for proportionality of the covariates of all three operating conditions, the 

log of the negative log of the reliability function is plotted as seen in Figure  below. 
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Figure 16-9 Check for Proportionality of PHM Covariates 

 The baseline hazard rate is then estimated with the covariate value of 0 for normal conditions.  

The predicted hazard rate can be seen in Figure 16- below. 
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Figure 16-10 Estimated Cumulative Hazard Rates 

Finally, the samples are used to collect the PH model’s coefficients with the covariates of 1 for 

off road and 2 for high slip.  The model is then run and results in a regression coefficient that can 

then be used to model the hazard rates.  Figure 16- below shows the comparison of the actual data 

to the PH model’s results.  A full discussion of developing a proportional hazards model can be 

found in [Kumar and Kelfjo, 1994]. 
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Figure 16-11 Comparison of Actual Data to PH Model's Results 

 

16.2.9 Type III Prognostics  

Type III models consider the actual condition of the system, either directly measured from the 

system or inferred from other measurements.  These condition measurements, often called 
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degradation measures or prognostic parameters, are used to extrapolate from the current condition 

to a pre-defined critical failure threshold.  The following section introduces the idea of the 

prognostic parameter.  This is followed by descriptions the two Type III models available in the 

PEP Toolbox: general path model and particle filtering model.   Finally, a short discussion of 

selecting an appropriate prognostic parameter is given, which necessary for either algorithm.  

16.2.10 Prognostic	Parameter	
Effects-based prognostics uses degradation measures to form a prognostic prediction.  A 

prognostic parameter, also called a degradation measure, is a scalar or vector quantity that 

numerically reflects the current ability of the system to perform its designated functions properly. 

It is a quantity that is correlated with the probability of failure at a given moment.  A degradation 

path is a trajectory along which the degradation measure is evolving in time towards the critical 

level corresponding to a failure event.  Type III prognostics attempt to extrapolate along this 

degradation path to determine the RUL of a component or system. 

The degradation measure does not have to be a directly measured parameter.  It could be a 

function of several measured variables that provide a quantitative measure of degradation.  It 

could also be an empirical model prediction of the degradation that cannot be measured.  For 

example, pipe wall thickness may be an appropriate degradation parameter but there may not be 

an unobtrusive method to directly measure it.  However, there may be related measurable 

variables that can be used to predict the wall thickness.   In this case the degradation parameter is 

not a directly measurable parameter but a function of several measurable parameters.  Monitoring 

system residuals are intuitive candidates for prognostic parameters because they naturally 

characterize how “far” a system is from normal operation.  

When the degradation level of a system reaches some predefined critical failure threshold, the 

system is said to have experienced a soft failure; for example, car tire tread is below some 

specified depth.  These failures generally do not concur with complete loss of functionality, as in 

a hard failure; however, they correspond with the time when an operator is no longer confident 

that equipment will continue to work to its specifications.  Both general path models and particle 

filters attempt to extrapolate the prognostic parameter to a critical failure threshold to estimate the 

RUL; these algorithms are described in the following sections.  

16.2.11 General	Path	Model	
The General Path Model (GPM) was first proposed by Lu and Meeker [1993] to move reliability 

analysis from failure time to failure mode analysis.  The GPM reliability methodology has a 

natural extension to estimation of RUL of an individual component or system.  GPM analysis 
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begins with some assumption of an underlying functional form of the degradation path for a 

specific fault mode.  The degradation of the ith unit at time tj is given by: 

yij (t j ,,i)  ij 

where φ is a vector of fixed (population) effects, θi is a vector of random (individual) effects for 

the ith component, and εij ~ N(0,σ2
ε) is the standard measurement error term.  The model 

parameters are estimated from the available data.  This degradation path model, yi, can be 

extrapolated to the failure threshold, D, to estimate the component's time of failure.  

As data is collected during use, the degradation model is fit for the individual component.  This 

specific model can be used to project a time of failure for the component.  Because of noise in the 

degradation signal and uncertainty in the failure threshold, the projected time of failure is not 

exact.  Monte Carlo techniques are used with estimates of the uncertainty sources to project a 

95% uncertainty interval around the RUL estimate. 

The traditional GPM methodology considers only the data collected on the current unit to fit the 

degradation model.  However, prior information is available from the historic degradation paths 

used for initial model fitting, including the mean degradation path and associated distributions.  

This data can provide valuable knowledge for fitting the degradation model of an individual 

component, particularly when only a few data points have been collected or the collected data 

suffers from excessive noise.  Bayesian updating methods are used to incorporate this additional 

information in the fitted model.   

Bayesian updating is a method for combining prior information about the set of model parameters 

with new data observations to give a posterior distribution of the model parameters (Figure 16-).  

This allows both current observation and past knowledge to be considered in model fitting. 
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Figure 16-12: Bayesian Updating Methodology 

The PEP Toolbox allows for Bayesian updating of linear regression models.  These models are 

not necessarily linear models, but are linear-in-parameters.  In this vein, a linear regression model 

is given by: 

Y  bX  

The model parameters are estimated as: 

b  X Ty
1X 1

XTy
1Y

 

where Σy is the variance-covariance noise matrix for the response observations.  It is important to 

note that the linear regression model is not necessarily a linear model.  The data matrix X can be 

populated with any function of degradation measures, including higher order terms, interaction 

terms, and functions such as sin(x) or ex.  If prior information is available for a specific model 

parameter, i.e. βj~N(βjo,σ
2
β), then the matrix X should be appended with an additional row with 

value one at the jth position and zero elsewhere, and the Y matrix should be appended with the a 

priori value of the jth parameter.   

X*  [ X; 0  0 1 0  0 ]

Y *  [ Y ;  j ]
 

Finally, the variance-covariance matrix is augmented with a final row and column of zeros, with 

the variance of the a priori information in the diagonal element.   
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* 

 y
2 0  0

0  0 

0   y
2 0

0  0  j

2




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













 

If knowledge is available about multiple regression parameters, the matrices should be appended 

multiple times with one additional row for each parameter. 

It is convenient to assume that the noise in the degradation measurements is constant and 

uncorrelated.  Some a priori knowledge of the noise variance is available from the exemplar 

degradation paths.  If this assumption is not valid for a particular problem, then other methods of 

estimating the noise variance must be used.  The assumption of uncorrelated noise allows the 

variance-covariance matrix to be a diagonal matrix consisting of noise variance estimates and a 

priori knowledge variance estimates.  If this assumption is not valid, including covariance terms 

is trivial; again these terms can be estimated from historical degradation paths.   

After a priori knowledge is used to obtain a posterior estimate of degradation parameters, 

this estimate becomes the new prior distribution for the next estimation of degradation 

parameters.  The variance of this new knowledge is estimated as: 

 

where n is the number of observations used to fit the current model.   

Bayesian updating is particularly effective when few data points are available or the data is 

contaminated with a high level of noise. An example application is given here to illustrate the 

efficacy of Bayesian techniques. Figure 16- shows the prognostic parameter for a population of 

failed systems.  These parameters have a clear, negative trend toward failure which is roughly 

quadratic in nature.  For this GPM system, a quadratic function is fit to data from a new system 

and extrapolated to a critical failure threshold of approximately -20.  Figure 16- shows the results 

of applying the GPM to approximately 90 observations of noisy data from a new system.  As the 

figure shows, the small amount of data available includes noise levels which preclude appropriate 

model fitting.  Figure 16- shows the prognostic result for the same system when Bayesian 

updating is employed.  In this model, the inadequate data available from the system is augmented 

with prior information to “force” the model fit to take the downward shape which is historically 

expected.  The RUL estimate obtained with the Bayesian approach is 135 cycles, versus an 
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undeterminable estimate obtained from the non-Bayesian approach.  The actual RUL after the 

first 84 observations is 170 cycles, resulting in an RUL error of approximately 20%.  While this 

error is still high, it is within a reasonable accuracy considering the amount of data available and 

will improve further as more data is collected.   

 

Figure 16-13: Prognostic Parameter for a Population of Failed Systems 

 

Figure 16-14: GPM fit without Bayesian updating 
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Figure 16-15: GPM fit with Bayesian updating 

16.2.12 Particle	Filtering	Model	
Particle filtering was originally developed to provide an estimation of the marginal probability in 

Bayes' Theorem that would allow for modeling of nonlinear systems and potentially non-

Gaussian noise [Cadini, 2009].  The particle filter method utilizes Monte Carlo simulation to 

provide an approximate solution to the marginal distribution by generating artificial random 

samples and comparing their distribution to that of the measurements.  The particle filter method 

first starts with Bayes' Theorem: 

. 

Here, x represents the state-space vector of the system, which is not directly measured.  

In condition monitoring, this is typically the prognostic parameter or other measure of system 

health.  The term z represents the vector of measurements.  Measurements are first taken at time = 

0; the "current" time, or the time of interest is represented by the subscript k, and the previous 

time step is k-1.  The term  is defined as the posterior distribution and represents the 

distribution of the likelihood of a system state xk existing given the measurements z0:k (i.e. all 

measurements, including the current measurement).  The term  is the conditional 

probability and represents the likelihood that a given state would yield the current measurements.  

The term  is the prior distribution and is the likelihood that a given state would exist 

based on all measurements prior to the current measurement.  Finally,  is the 
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marginal probability and represents the likelihood that the current measurements would occur 

given all previous measurements. 

The long-standing difficulty with Bayes' Theorem is determining the marginal 

probability, and this is the purpose of particle filtering.  The first step in particle filtering is 

Sequential Importance Sampling (SIS), where a known distribution is used to generate random 

samples for x0:k.  (In contrast to GPM, SIS updates all particles simultaneously at a given time 

step rather than updating a single particle all the way to failure.)  The distribution only needs to 

ensure that the range of possibilities is covered, though a distribution that closely resembles the 

true distribution of probabilities should provide faster convergence and more reliable results.  

This distribution is defined as an importance function: 

. 

Next, weights for the sample particles are defined by relating the importance function to 

the posterior distribution: 

. 

In the above equation, both terms in the ratio are unknown.  However, the weights from 

the previous time step are known and can be used to approximate the weights according to (1).  

The approximation may require normalization to form a true pdf; this can be readily performed 

after all weights are estimated. 

  (1) 

A visual example of the weighting process may be seen in Figure 16- and Figure 16-.  

Prior to weighting, all samples have equal weight.  At time step 20, those particles whose states 

have a higher likelihood of representing the true state of the system (as estimated through 

measurements) receive greater weight; the particles with less likelihood of representing the 

system receive less weight.  Having re-weighted the particles, they now represent an updated 

posterior distribution of the marginal probability and the new posterior distribution may be 

estimated. 
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Figure 16-16: Sample Estimates of the System State Prior to Weighting 
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Figure 16-17: Sample Estimates of the System State after Weighting 

As this process is repeated, the particle weights are continually updated every time Bayes' 

Rule is applied.  Since SIS will add weight to particles with the highest likelihood at the expense 

of lower-likelihood particles, the process will eventually drive the weights of all particles to zero 

except for the highest-likelihood particle, a problem known as degeneracy.  To avoid degeneracy, 

the particles are occasionally redistributed by Sequential Importance Resampling (SIR). 

SIR may be conducted by a variety of methods, but the general approach is to replace the 

existing weighted particles with new unweighted particles chosen by the posterior distribution 
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provided by SIS.  In review, SIS may be seen as a filter of particle weights where the weights are 

updated to fit the estimated posterior distribution.  SIR may therefore be seen as a filter of the 

particles themselves, where new particles are chosen based on the weighted particles after SIS.  

This two-stage process is the heart of particle filtering. 

Because particle filtering employs a Monte Carlo process, uncertainty estimates may be 

readily provided by the existing particle distributions.  The state estimate at the present time is 

given by (2).  The failure probability estimate at a future time k+i is given by (3).  Finally, the 

failure time distribution at a future time k+i is given by (4). 

  (2) 

   (3) 

  (4) 

 Additional statistical inferences may be made via the particle distributions, such as 95% 

confidence intervals, hypothesis tests, etc. 

Both Type III prognostic algorithms described rely on an appropriate prognostic 

parameter for modeling and extrapolating to failure.  The PEP toolbox includes functionality to 

automatically select an appropriate, near-optimal prognostic parameter from available data 

sources.  The following section briefly describes that process.  

16.2.13	Selecting	a	Prognostic	Parameter	
An ideal prognostic parameter has three key qualities: monotonicity, prognosability, and 

trendability [Coble and Hines, 2009].  Monotonicity characterizes the underlying positive or 

negative trend of the parameter.  This is an important feature of a prognostic parameter because it 

is generally assumed that systems do not undergo self-healing, which would be indicated by a 

non-monotonic parameter.  However, this assumption is not valid for some components such as 

batteries, which may experience some degree of self-repair during short periods of nonuse.  The 

monotonic trend is considered valid when considering an entire system, even if individual 

components or sub-systems may experience some self-repair.  Prognosability gives a measure of 

the variance in the critical failure value of a population of systems. Ideally, failure should occur at 
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a crisp, well-defined degradation level. A wide spread in critical failure values can make it 

difficult to accurately extrapolate a prognostic parameter to failure.  Finally, trendability indicates 

the degree to which the parameters of a population of systems have the same underlying shape 

and can be described by the same functional form.  These three intuitive metrics are formalized in 

[Coble, 2010] to give a quantitative measure of prognostic parameter suitability.   

Monotonicity is a straightforward measure given by:  

 

where n is the number of observations in a particular history.  The monotonicity of a population 

of parameters is given by the average difference of the fraction of positive and negative 

derivatives for each path.  When using data collected or inferred from actual systems, it is 

important to adequately smooth the data to give more accurate estimates of the derivatives.  

Numerical calculation of a function derivative should rarely be left to a simple difference 

function; the addition of noise makes this method inaccurate and impractical.  In practice, fitting a 

line to a small portion of the data, perhaps five or ten observations, and taking the derivative to be 

the slope of that line will give a more realistic measure of the slope.  When this method is 

employed, the above equation for monotonicity need only be adjusted for the number of 

calculated derivatives.  Instead of n-1 derivatives, n-m derivatives may be calculated, where m is 

the number of data points used to calculate one derivative.  It is important to note that the current 

formulation of monotonicity does not consider if the entire population is monotonic in the same 

direction, only that each individual exhibits an either generally increasing or decreasing trend.  

This is an undesirable feature in the prognostic parameter; however, it is considered in 

characterizing the prognosability which looks at how well clustered failure values are.  If failure 

values for the entire population are well clustered and the individual parameters are monotonic, 

then the population must have either an increasing or decreasing monotonicity.   

Prognosability is calculated as the deviation of the final failure values for each path divided by 

the mean range of the path.  This is exponentially weighted to give the desired zero to one scale:  

 

This measure encourages well-clustered failure values, i.e. small standard deviation of failure 

values, and large parameter ranges.  This gives the model a long range to predict a very precise 
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value, which can be related to the notice period discussed previously.  The failure values for the 

good prognostic parameter are very well clustered, following a wide range; the prognosability is 

0.930.  The failure values of the population of bad prognostic parameters cover a wide range of 

values; this parameter has prognosability of only 0.346.   

Characterizing the trendability of a population of parameters poses significant difficulty 

compared to the other two metrics.  A candidate parameter is trendable if the same underlying 

functional form can model each parameter in the population.  Initially, trendability was 

characterized by comparing the fraction of positive first and second derivatives in each parameter.  

However, this naïve approach was highly susceptible to noise and did not provide a clear 

distinction between trendable and not-trendable parameters.  An improved method for 

characterizing trendability is used in which prognostic parameters are re-sampled with respect to 

the fraction of total lifetime.  This results in each prognostic parameter containing exactly 100 

observations, with each observation corresponding to 1% of lifetime.  The linear correlation is 

calculated across the population of prognostic parameters, and the trendability is given by the 

smallest absolute correlation:  

 

The PEP toolbox utilizes these suitability metric with genetic algorithm optimization to identify a 

near-optimal prognostic parameter from the available data sources.  The prognostic parameter is 

optimized according to the following fitness function: 

fitness  wmmonotonicitywp prognosabilitywttrendability
 

The weights may be adjusted to give more importance to certain metrics over others.  

16.2.14 Bayesian Transitions 

Each prognostic type takes in different information and requires different algorithms and models 

to apply. The data, and thus type, can be categorized chronologically to the component's life,. 

Type I before first startup and on. Type II before a fault is found. Type III to track the fault to 

failure. However there is not yet a unified approach that follows a component through its life, nor 

is there a way of preserving information from one type and carrying it to the next stage of 

analysis.  
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Figure 16-18 Lifecycle Prognostics with Bayes Transitions 

One approach has been to apply Bayesian transitions. These methods combine previous estimates 

of a parameter, priors, with sampling data to produce a posterior estimate that combines both 

sources of data, while reducing uncertainty. This can be useful when investigating Lifecycle 

Prognostics. Bayesian transitioning methods can be applied to bridge between prognostics types.  

16.2.15 Type	I	to	Type	II	Transition	
For this transition, Bayes formula can be applied using conjugate distributions. This is a widely 

practiced form of Bayes formula, and is characterized by relatively straightforward equations that 

are easily referenced. For example, the Gaussian conjugate distribution not only has Gaussian 

prior and posterior distributions, but also a normally distributed data sample.  

First the Gaussian prior distribution is defined as  

 

Let X1, X2…Xn be independently and identically distributed (i.i.d.) sampling data ~ N(μ, σ2). 

 

These equations are combined with Equation XX to yield 
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Equation XX gives the maximum likelihood estimate (MLE) of the mean of the distribution, 

while equation XX gives the variance of the mean. It is important to distinguish between variance 

of the distribution, and variance of the mean. This variance is a measure of certainty of the 

expected mean estimate. The smaller the variance, the more precise the estimate is.   

The prior variance τ2 measures the strength of the belief in the uncertainty of the prior 

distribution. In this sense 1/τ2 is the precision of the prior, while n/σ2 is the precision of n data 

points. This means that the posterior mean is the weighted average of the prior and sample means 

with the precisions of each as weights. It also means that with more data, the prior is swamped 

out, and eventually the MLE approaches the posterior.   

When applied to prognostics, the Type I RUL estimate distribution can be considered as the prior, 

with the Type II estimate as the sampled data. The fact that most Type I models use a Weibull 

distribution instead of a Gaussian can be a possible limitation. There does not exist 

straightforward solutions to a Weibull prior, as there is for the Gaussian. However, there are 

equations that re-paramaterize the Weibull parameters, transforming them into the mean and 

variance parameters of the Gaussian. This re-parameterization can retain much of the original 

distribution, especially if the distribution is similar to a Gaussian in the first place.  

16.2.16 TypeI/II	to	Type	III	Transition	
Bayesian priors can also be incorporated into the OLS model  to reduce the uncertainty and 

increase the stability of RUL estimates. Bayesian statistics combines prior distributions with 

sampling data to create a posterior distribution. When very few data points are available the 

model can easily be thrown off and give wildly varying time of failures. When applied to OLS, 

the prior parameters, from all the failed cases, form the prior distribution. The sampled data 

comes from the censored data.  

 Using equation XX, it is then assumed that the parameters are normally distributed, 

allowing the use of the Gaussian conjugate distribution. The conditional posterior distribution is 
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then equation 13. Equations 14-16, based on the pseudoinverse solution equation 7, are used to 

solve equation 13, where n is the number of data points, and k is the degree of the polynomial fit.  

 

 

 

 

 Before the Bayes prior information is incorporated, a data covariance matrix Σ is 

introduced. Instead of assuming equally distributed errors, σ2I, the covariance matrix is an n x n 

symmetric positive matrix. The previous equations are then replaced by their analogous versions.  

 

 

 

 To include Bayesian updating[13], the prior distribution of the path parameters ~N(b0,Σb) 

is treated as additional data points to the OLS solution. To achieve this, each variable is appended 

with the prior distribution data, equation 20. The X is appended with an identity matrix, with ones 

representing the parameters for which prior distributions exist. Y is appended with the prior mean 

values of the parameters. The diagonal matrix Σ is expanded with the variances of the prior 

parameters.  

, ,  

 Another method, a novel approach presented in this research, is to treat a prior RUL 

distribution as an additional data point.  

, ,  
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For example, if a Type I RUL distribution exists then the y is appended with the degradation 

threshold, X with the mean time to failure based on Type I analysis. And the diagonal matrix is 

appended with a measure of the RUL uncertainty distribution.  

 For both cases, the weight of the prior then depends on two main factors: the variance of 

the prior against the variance of the data, and the number of samples taken in. If the variance of 

the prior is small against the noise of the data, the prior b0 will be weighed more heavily. 

However, no matter the difference in variance, with enough sampling, the data will eventually 

swamp out the prior in calculating the posterior.   
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16.3 PEM Functions List 

The following is a partial list of functions from the PEM toolbox likely to be accessed directly by 

the user. While the PEM contains many more useful functions, a large portion are called by the 

more user-friendly high level functions provided here. Core low level functions are also provided 

to allow for the user to bypass PEM model architectures.  

aagroup Groups variables for use in an auto-associative empirical model 

aakr  Low level implementation of auto-associative kernel regression 

aars  Smoothes multivariate data using an auto-associative regression model 

amfdet  Detects faults in a set of query data according to automated methods 

autogroup Automated variable grouping 

cleandata Cleans a set of data 

confh  Consolidate fault hypothesis 

eulm  Performs error uncertainty limit monitoring fault detection 

fdetect  Detect faults within a set of data 

gcplot  Creates a plot of the absolute correlation coefficients  

initmodel Initializes a PEM toolbox model structure 

kr  Low level implementation of kernel regression 

modchar Characterizes an empirical model 

optmodel Optimizes the architecture of an empirical model 

runmodel Runs a simulation of an empirical model for query data 

setmsa  Sets one or more of a model's attributes 

sprtn  Uses the SPRT for a multivariate normal distribution for fault detection 

uicm  Performs uncertainty interval coverage monitoring fault detection 

unscore  Un-scales mean center, unit variance of scaled data 
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vectsel  Selects representative vectors from a set of data 

vensample Performs a Venetian blind sampling of a set of data 

zscore1  Scales data to have mean center, unit variance
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PEM Functions Descriptions 

aagroup 

Autoassociative variable grouping 

Syntax 

[Groups Ungrouped Removed] = AAGROUP(X,CutOff) 

[Groups Ungrouped Removed] = AAGROUP(X) 

Description 

This function groups variables for use in an autoassociative empirical model. 

[Groups Ungrouped Removed] = AAGROUP(X,CutOff) performs a variable grouping of X by 

comparing correlations to CutOff.  The result is a cell array of the selected variable indices for 

each group Groups, a matrix of the ungrouped sensor variables Ungrouped, and a matrix of 

variable indices for the removed constants Removed. 

[Groups Ungrouped Removed] = AAGROUP(X) performs the same grouping as described above 

with CutOff set to 0.7. 

Example 

clear; 

load groupexample; 

[groups ungrouped removed] = aagroup(Data) 

 

Variables:36 

Observations:1000 

Removed Sensors:  

33  34  35  36 

The number of the removed sensors:4 
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groups =  

 

    [1x8 double]    [1x8 double]    [1x8 double]    [1x8 double] 

 

ungrouped = 

 

   Empty matrix: 1-by-0 

 

removed = 

 

    33    34    35    36 

 

 

 

clf reset; 

gplot1(groups); 
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clf reset; 

gplot2(groups); 

 

 



293 
 

 

aakr 

Autoassociative kernel regression 

Syntax 

XHat = AAKR(XT,X,H) 

XHat = AAKR(XT,X,H,false) 

Description 

This function is a low level implementation of autoassociative kernel regression.  This function is 

intended to be used to bypass the use of model structures or as a template for the development of 

custom algorithms. 

XHat = AAKR(XT,X,H) predicts the X with the standard autoassociative kernel regression 

algorithm.  XT are the training data, X are the query predictors, and H is the kernel bandwidth.  

XHat are the corrected values for X. 

XHat = AAKR(XT,X,H,false) simulates the autoassociative kernel regression model without 

displaying the wait bar. 

The dimensions of XT are MxP, where M is the number of training observations (memory 

vectors) and P is the number of variables. The dimensions of X and XHat are NxP, where N is the 

number of query observations. 

This functions has been designed for lightweight deployment.  This means that this function may 

be deployed independent of the PEM Toolbox. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X(:,[1:4 6:9])); 

train = x(1:200,:); 

test = x(201:800,:); 
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p = aakr(train,test,0.5); 

 

clf reset; 

plot(test(:,1),'.'); 

hold on; 

plot(p(:,1),'r','LineWidth',2); 

hold off; 

xlabel('Test Observation Number'); 

ylabel('Sensor Output'); 

title('AAKR Predictions','FontWeight','Bold'); 

legend('Data','Predictions','Location','Best'); 
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aars 

Autoassociative regression smoothing 

Syntax 

XS = AARS(X,N) 

XS = AARS(Model,X,N) 

Description 

This function smoothes multivariate data using an autoassociative regression model. 

XS = AARS(X,N) smoothes the multivariate data X by successively simulating an 

autoassociative kernel regression (AAKR) model N times. If N is not supplied, then the default 

value of 1 is used. 

XS = AARS(Model,X,N) smoothes X by successively simulating Model N times.  If N is not 

supplied, then the default value of 1 is used 

Example 

clear; 

x1 = -20:0.1:20; 

x2 = x1.^2-100; 

x3 = x1+x2; 

xt = [x1' x2' x3']; 

[xt xm xstd] = zscore1(xt); 

x = xt+0.2.*randn(size(xt)); 

 

clf reset; 

plot3(x(:,1),x(:,2),x(:,3),'*'); 

hold on; 
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plot3(xt(:,1),xt(:,2),xt(:,3),'r','LineWidth',2); 

hold off; 

grid on; 

xlabel('x_1'); 

ylabel('x_2'); 

zlabel('x_3'); 

 

 

 

xs = aars(x); 

 

clf reset; 

plot3(xt(:,1),xt(:,2),xt(:,3),'r','LineWidth',2); 

hold on; 

plot3(xs(:,1),xs(:,2),xs(:,3),'.'); 
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hold off; 

grid on; 

xlim([-2 2]); 

ylim([-2 3]); 

zlim([-1.5 2.5]); 

title('Autoassociative Regression Smoothing','FontWeight','Bold'); 

xlabel('x_1'); 

ylabel('x_2'); 

zlabel('x_3'); 

legend('Noise-Free Data','Smoothed Data','Location','ne'); 

 

 

 

model = initmodel('aakr',x,'vsmethod','a','bandwidth',0.4); 

xs = aars(model,x); 
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clf reset; 

plot3(xt(:,1),xt(:,2),xt(:,3),'r','LineWidth',2); 

hold on; 

plot3(xs(:,1),xs(:,2),xs(:,3),'.'); 

hold off; 

grid on; 

xlim([-2 2]); 

ylim([-2 3]); 

zlim([-1.5 2.5]); 

title('Autoassociative Regression Smoothing','FontWeight','Bold'); 

xlabel('x_1'); 

ylabel('x_2'); 

zlabel('x_3'); 

legend('Noise-Free Data','Smoothed Data','Location','ne'); 
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amfdet 

Automated fault detection 

Syntax 

[FHyp FScore Result] = AMFDET(Model,Query) 

[FHyp FScore Result] = AMFDET(Model,Query,'flag',value,...) 

Description 

This function detects faults in a set of query data according to automated methods. 

[FHyp FScore Result] = AMFDET(Model,Query) detects faults in Query according to the method 

and attributes stored in Model. 

[FHyp FScore Result] = AMFDET(Model,Query,'flag',value,...) detects faults in Query 

overriding the attributes supplied by the respective flag/value pairs. 

This function returns a matrix of fault hypotheses FHyp, fault scores FScore, and results structure 

Result.  Result contains the method dependant information used in the fault detection. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X); 

train = x(1:200,:); 

test = x(201:802,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false,'fdetmethod','sprtn'); 
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p = runmodel(model,test); 

 

clf reset; 

t = 201:802; 

plot(t,test(:,5),'b.',t,p(:,5),'r','LineWidth',1.5); 

axis([201 802 62 63]); 

xlabel('Observation Number'); 

legend('Data','Predictions'); 

 

 

 

model = setmsa(model,'alpha',0.01,'beta',0.10); 

model = sprtchar(model); 

[fhyp fscore result] = amfdet(model,test); 
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clf reset; 

sprtplot(result,5); 
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autogroup 

Automated variable grouping 

Syntax 

[Groups Ungrouped Removed] = AUTOGROUP(X) 

[Groups Ungrouped Removed] = AUTOGROUP(X,CutOff,MinGroupSize) 

GData = AUTOGROUP(Data) 

GData = AUTOGROUP(Data,CutOff,MinGroupSize) 

Description 

This function uses a set of default settings to perform an automated variable grouping.  The 

grouping methods used in this function include initial grouping (AAGROUP), small group 

merging (MSGROUP), and orphan variable adoption (AORPHAN). 

[Groups Ungrouped Removed] = AUTOGROUP(X) groups the variables of the data matrix X.  

This function returns a cell array of group indices, where the variable indices of group i are 

accessed by entering Groups{i}.  In addition, the variable indices of the un-grouped and removed 

variables are returned in Ungrouped and Removed, respectively. 

[Groups Ungrouped Removed] = AUTOGROUP(X,CutOff,MinGroupSize) uses the cutoff 

correlation coefficient CutOff instead of the default 0.7 and uses the minimum group size of 

MinGroupSize instead of the default values determined by MSGROUP. 

GData = AUTOGROUP(Data) groups the variables in the data structure Data and returns a new 

data structure GData that has its group index values attributes field (groupi) set to the identified 

groups.  The groups include the identified groups as well as groups for the un-grouped and 

removed variables. 

GData = AUTOGROUP(Data,CutOff,MinGroupSize) uses the cutoff correlation coefficient 

CutOff instead of the default 0.7 and uses the minimum group size of MinGroupSize instead of 

the default values determined by MSGROUP. 

Example 
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clear; 

load groupexample; 

data = initds(Data,'plotresults',false,'groupeditor',false); 

initial_groups = data.attributes.groupi 

 

initial_groups =  

 

    [1x36 double] 

 

data = autogroup(data); 

final_groups = data.attributes.groupi 

 

Variables:36 

Observations:1000 

Removed Sensors:  

33  34  35  36 

The number of the removed sensors:4 

 

final_groups =  

 

    [1x8 double]    [1x8 double]    [1x8 double]    [1x8 double]    

[1x4 double] 
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cleandata 

Clean a set of data 

Syntax 

XC = CLEANDATA(X) 

XC = CLEANDATA(X,'method') 

Description 

This function cleans a set of data. 

XC = CLEANDATA(X) cleans X using the default linear interpolation imputation method 

('linear').  This function returns the cleaned data XC. 

XC = CLEANDATA(X,'method') cleans X using the supplied imputation method 'method'.  

'method' may be set to any of the following character strings. 

   'linear'        linear interpolation 

   'pca'           principal component analysis 

If X is a data structure, then XT is also a structure initialized with the attributes of X except for 

the smoothing method, which is set to the default 'medianfilter'. 

Do not use CLEANDATA on new signals that have not been previously examined to determine if 

data conditioning is appropriate.  The reason being is that some common data contamination 

mechanisms are significant and therefore should not be corrected. 

Also, this function assumes that the data is continuous.  If you have highly quantized data it is 

advised that you smooth the data with local averaging, kernel smoothing (KERS), etc. before 

presenting it to this function.  If you fail to perform this step the quantized data will often be 

interpreted as being stuck, resulting in the attempted correction of all of the data.  This will result 

in errors.  If you do not wish to smooth your data, please use the algorithm's composite functions, 

specifically PVIMP and UVOUT. 
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This function detects and corrects NaNs, stuck data, and outliers.  The algorithm simply flags 

each sensor that contains bad data and then uses principal component analysis (PCA) to infer the 

correct sensor values. 

Example 

clear; 

load redundantsensors; 

x = X(:,[1:4 6:9]); 

 

x(11:50,1) = x(10,1).*ones(40,1); 

x(60,1) = 63; 

xc = cleandata(x); 

clf reset; 

t = 1:100; 

plot(t,x(t,1),'k.',t,xc(t,1),'b','LineWidth',1.5); 

axis([0 100 60.5 64]); 

legend('Raw','Cleaned'); 
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x = cleandata(X(1:200,[1:4 6:9])); 

 

clf reset; 

t = 1:size(x,1); 

plot(t,x(t,1),'k.',t,xc(t,1),'b','LineWidth',1.5); 

legend('Raw','Cleaned'); 

axis([0 200 61 62]); 
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confh 

Consolidate fault hypotheses 

Syntax 

CFHyp = CONFH(FHyp,Logic) 

CResult = CONFH(Result,Logic) 

Description 

This function consolidates a series of fault hypotheses by removing spurious alarms. 

CFHyp = CONFH(FHyp,Logic) consolidates the fault hypotheses FHyp using the supplied alarm 

logic Logic.  If Logic is not supplied then the default of alarm logic of 5 is used. 

CResult = CONFH(Result,Logic) consolidates the fault hypotheses in Result using the supplied 

alarm logic Logic.  If Logic is not supplied then the default of alarm logic of 5 is used. 

Logic may be either a single value that indicates how many successive deviations are used to 

trigger an alarm or a vector [ND NT], where ND is the number of detections and NT is the total 

number of observations. For example, a Logic value of 3 would indicate that a signal is faulted 

when 3 successive observations exceed the threshold and a Logic value of [3 5] would indicate 

that a signal is faulted when 3 out of 5 observations exceed the threshold. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X); 

train = x(1:200,:); 

test = x(201:802,:); 

 

model = initmodel('aakr',train); 
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model = setmsa(model,'plotresults',false,'fdetmethod','sprtn'); 

 

p = runmodel(model,test); 

 

clf reset; 

t = 201:802; 

plot(t,test(:,5),'b.',t,p(:,5),'r','LineWidth',1.5); 

axis([201 802 62 63]); 

xlabel('Observation Number'); 

legend('Data','Predictions'); 

 

 

 

model = setmsa(model,'alpha',0.05,'beta',0.10); 

model = sprtchar(model); 
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[fhyp fscore result] = amfdet(model,test); 

sprtplot(result,5); 

 

 

 

result = confh(result); 

sprtplot(result,5); 

 



312 
 

 



313 
 

 

eulm 

EULM fault detection 

Syntax 

[FHyp FScore] = EULM(Error,ErrorU,Tol) 

Description 

This function performs error uncertainty limit monitoring fault detection. 

[FHyp FScore] = EULM(Error,ErrorU,Tol) detects faults by comparing an error Error and its 

uncertainty ErrorU with a tolerance Tol.  Here, Tol is matrix of values that is usually defined as a 

multiple of the target predictions.  For example, if Error is the prediction error of an empirical 

model for the target data Target, then a 10% tolerance would be equal to 0.1*Target. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X); 

train = x(1:2:200,:); 

test = x(201:2:802,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false,'interval','pi'); 

 

[p pu] = modelu(model,train); 

 

p = runmodel(model,test); 

pu = ones(size(test,1),1)*mean(pu); 
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error = p-test; 

erroru = pu; 

mean_value = ones(size(test,1),1)*mean(train); 

tol = 0.01.*mean_value; 

 

[fhyp fscore] = eulm(error,erroru,tol); 

 

clf reset; 

eulmplot(error,erroru,tol,fhyp,5); 

 

 

 



315 
 

 

fdetect 

Fault detection 

Syntax 

[FHyp FScore] = FDETECT('method',Parameters...) 

[FHyp FScore] = FDETECT('eulm',Error,ErrorU,Target,[Tol]) 

[FHyp FScore] = FDETECT('sprtn',M,V,Error,[Alpha],[Beta],[Tol]) 

[FHyp FScore] = FDETECT('uicm',Pred,PredU,Target,[Thresh],[Window]) 

Description 

This function uses various methods to detect faults within a set of data. 

[FHyp FScore] = FDETECT('method',Parameters...) detects faults by using the specified method 

'method' and its associated Parameters.  This function returns a matrix of fault hypothesis 

(true/false) FHyp and their associated scores FScore.  The detection method may be set to any of 

the following character strings: 

   'eulm'      error uncertainty limit monitoring 

   'sprtn'     SPRT of a normal distribution 

   'uicm'      uncertainty interval coverage monitoring 

[FHyp FScore] = FDETECT('eulm',Error,ErrorU,Target,[Tol]) detects faults by comparing the 

error Error and its uncertainty ErrorU with a specified tolerance Tol.  Here, Error is the predictive 

error of an empirical model for Target and the tolerance Tol is a scalar value that indicates an 

acceptable fractional range of variation for the predictive error.  If not specified the tolerance is 

set to 0.01 or 1%. 

[FHyp FScore] = FDETECT('sprtn',M,V,Error,[Alpha],[Beta],[Tol]) detects faults with the SPRT 

of a normal distribution using the false alarm probability Alpha, missed alarm probability Beta, 

and tolerance Tol. Tol may be either a single value or a matrix of values whose length is equal to 

the number of variables in Error.  If not supplied, Alpha is set to 0.01 (1%), Beta is set to 0.10 

(10%), and Tol is set to 2 standard deviations of the training error.  Refer to sprtn for additional 

information. 
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[FHyp FScore] = FDETECT('uicm',Pred,PredU,Target,[Thresh],[Window]) detects faults by 

comparing the local uncertainty interval, defined by Pred and its uncertainty PredU, coverage of 

Window observations with a threshold Thresh.  If not specified, Thresh is set to 0.5 (50%) and 

Window is set to 100 for more than 1,000 observations and NumObs/10 otherwise.  Here, 

NumObs is the number of observations in Pred, PredU, and Target.  Refer to uicm for additional 

information. 

To use the default value for an optional setting either neglect entering it in the function call or use 

[ ]. 

 

Example 

clear; 

load redundantsensors; 

x = cleandata(X); 

train = x(1:2:200,:); 

test = x(201:2:802,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false,'interval','pi'); 

 

[p pu] = modelu(model,train); 

 

p = runmodel(model,test); 

pu = ones(size(test,1),1)*mean(pu); 

error = p-test; 

erroru = pu; 

mean_value = ones(size(test,1),1)*mean(train); 
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tol = 0.01.*mean_value; 

 

[fhyp fscore] = fdetect('eulm',error,erroru,test); 

 

clf reset; 

eulmplot(error,erroru,tol,fhyp,5); 
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gcplot 

Group correlation plot 

Syntax 

GCPLOT(X) 

GCPLOT(X,Groups) 

GCPLOT(S) 

Description 

This function creates a plot of the absolute correlation coefficients for the organized variable 

groups. 

GCPLOT(X) creates a correlation plot for the all variables in X. 

GCPLOT(X,Groups) creates a group correlation plot for the organized variable groups of X, 

where Groups is a cell array of variable indices that define the variable groups. 

GCPLOT(S) creates a group correlation plot for the structure S.  Here, S may be either a data 

structure or model structure. 

Example 

clear; 

load groupexample; 

 

clf reset; 

gcplot(Data); 

 

Warning: Divide by zero. 
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[g ug r] = aagroup(Data); 

 

Variables:36 

Observations:1000 

Removed Sensors:  

33  34  35  36 

The number of the removed sensors:4 

 

 

clf reset; 

gcplot(Data,g); 
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initmodel 

Initialize model structure 

Syntax 

Model = INITMODEL('aatype',Train) 

Model = INITMODEL('aatype',Train,'flag',value,...) 

Model = INITMODEL('type',Predictor,Response) 

Model = INITMODEL('type',Predictor,Response,'flag',value,...) 

Description 

This function initializes a PEM Toolbox model structure. 

Model = INITMODEL('aatype',Train) initializes an autoassociative model of the specified type 

'aatype' with the training data Train using the default architecture.  The autoassociative model 

type may be set to any of the following character strings: 

   'aakr'      autoassociative kernel regression 

   'aann'      autoassociative neural network 

   'palm'      pseudo-autoassociative linear model 

Model = INITMODEL('aatype',Train,'flag',value,...) initializes an autoassociative model structure 

of a specified type from the training data Train and model specific architecture indicated by their 

appropriate flag/value pairs. 

Model = INITMODEL('type',Predictor,Response) initializes an inferential or hetero-associative 

model of the specified type with the training predictors Predictor and responses Response using 

the default architecture.  The inferential and heteroassociative model type may be set to any of the 

following character strings: 

   'kr'        kernel regression 

   'linear'    linear regression 
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Model = INITMODEL('type',Predictor,Response,'flag',value,...) initializes an inferential or 

hetero-associative model structure of a specified type from the training predictors Predictor, 

responses Response, and model specific architecture indicated by their appropriate flag/value 

pairs. 

The architecture settings for the supported models may be set by any of the following flag/value 

pairs, where the default values are contained in parenthesis: 

   Autoassociative Kernel Regression ('aakr') 

   'bandwidth'     bandwidth (0.5) 

   'distance'      distance measure ('euclid') 

   'nmem'          number of memory vectors (1/2 x N) 

   'vsmethod'      vector selection method ('x') 

 

   Autoassociative Neural Network ('aann') 

   'display'       training display frequency (10) 

   'nbottleneck' number of bottleneck neurons (1/2 x P) 

   'nmap'          number of mapping neurons (P) 

   'ntrainepochs' number of training epochs (300) 

   'trainfunction' neural network training function ('trainlm') 

 

   Kernel Regression ('kr') 

   'bandwidth'     bandwidth (0.5) 

   'distance'      distance measure ('euclid') 

   'nmem'          number of memory vectors (1/2 x N) 

   'vsmethod'      vector selection method ('x') 

 

   Linear Regression ('linear') 
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   'regpar'        regularization parameter (0) 

 

   Pseudo-Autoassociative Linear Model ('palm') 

   'condition'     target condition number (100) 

Here, N refers to the number of training observations and P refers to the number of variables in 

the data. 

For AAKR and KR, the bandwidth can be either a single value or a vector of P values.  For linear 

regression, the regularization parameter can be either a single value or a vector of P values. 

For PEM Toolbox 1R, additional model types are available and may be set by the following 

character string: 

   'aamset'    autoassociative MSET 

   'esee'      Expert State Estimation Engine (Expert Microsystems) 

   'psa'       Parity Space Algorithm (Expert Microsystems) 

 

The architecture settings for the alternative model may be set by any of the following flag/value 

pairs, where the default values are contained in parenthesis: 

   Autoassociative MSET ('aamset') 

   'bandwidth'     bandwidth (1) 

   'distance'      distance measure ('euclid') 

   'nmem'          number of memory vectors (4 x P) 

   'regpar'        regularization parameter (0) 

   'vsmethod'      vector selection method ('x') 

 

   Expert State Estmation Engine ('esee') 

   'bandwidth'     bandwidth (0.5) 

   'nmem'          number of memory vectors (1/2 x N) 
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The distance measure may be set to any of the following character strings: 

   'aeuclid'   adaptive Euclidean 

   'euclid'    Euclidean 

   'norm1'     L-1 norm (PEM Toolbox 1R) 

   'reuclid' robust Euclidean (PEM Toolbox 1R) 

The vector selection method may be set to any of the following characters: 

   'a'         select all 

   'f'         fuzzy c-means clustering 

   'h'         Adeli-Hung clustering 

   'm'         min-max 

   's'         sort-select 

   'x'         combination of 'm' and 's' 

NOTE: The only functions supported for inferential and heteroassociative modeling are 

INITMODEL and RUNMODEL. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X(:,[1:4 6:9])); 

train = x(1:200,:); 

test = x(201:800,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false); 

 

p = runmodel(model,test); 
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clf reset; 

t = 1:size(test,1); 

plot(t,test(:,1),'k.',t,p(:,1),'b','LineWidth',1.5); 

title('AAKR Predictions for X_1','FontWeight','Bold'); 

legend('Test Data','Predictions'); 

 

 

 



326 
 

 

kr 

Kernel regression 

Syntax 

YHat = KR(XT,YT,X,H) 

YHat = KR(XT,YT,X,H,false) 

Description 

This function is a low level implementation of kernel regression.  This function is intended to be 

used to bypass the use of model structures or as a template for the development of custom 

algorithms. 

YHat = KR(XT,YT,X,H) predicts the response Y with the standard kernel regression algorithm.  

XT are the training predictors, YT are the training responses, X are the query predictors, and H is 

the kernel bandwidth.  YHat is the predicted response for the predictors X. 

YHat = KR(XT,YT,X,H,false) simulates the kernel regression model without displaying the wait 

bar. 

The dimensions of XT are MxP and YT are MxR, where M is the number of training observations 

(memory vectors), P is the number of predictor variables and R is the number of response 

variables.  The dimensions of X are NxP and YHat are NxR, where N is the number of query 

observations. 

This functions has been designed for lightweight deployment.  This means that this function may 

be deployed independent of the PEM Toolbox. 

Example 

clear; 

load nuclearcoolant; 

ptrain = train(:,9:10); 

rtrain = train(:,11:end); 
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pval = validation(:,9:10); 

rval = validation(:,11:end); 

 

p = kr(ptrain,rtrain,pval,0.5); 

 

clf reset; 

plot(rval(:,1),'.'); 

hold on; 

plot(p(:,1),'r','LineWidth',2); 

hold off; 

xlabel('Validation Observation Number'); 

ylabel('Sensor Output'); 

title('KR Predictions','FontWeight','Bold'); 

legend('Data','Predictions','Location','Best'); 
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modchar 

Model characterization 

Syntax 

Model = MODCHAR(Model) 

Model = MODCHAR(Model,Query) 

Description 

This function characterizes an empirical model. 

Model = MODCHAR(Model) characterizes the empirical model Model by using the data 

containted in the model structure. 

Model = MODCHAR(Model,Query) characterizes Model with Query. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X(:,[1:4 6:9])); 

train = x(1:200,:); 

test = x(201:802,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false,'uncertmethod','analytic'); 

attributes = model.attributes 

 

attributes =  
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             accuracy: [] 

        allowclipping: 1 

                alpha: 0.0100 

      autosensitivity: [] 

                 beta: 0.1000 

                 bias: [] 

           biasmethod: 'mse' 

     crosssensitivity: [] 

              display: 1 

        driftvariable: 'all' 

                error: [] 

    eulmdetectability: [] 

        eulmtolerance: 0.0100 

           fdetmethod: 'eulm' 

          groupeditor: 1 

               groupi: {[1 2 3 4 5 6 7 8]} 

           groupnames: {'Group 1'} 

         groupoverlap: 0 

             interval: 'ci' 

     kernelparameters: {[]} 

             maxdrift: 2 

                 name: 'Model of Data' 

        noisevariance: {[0.0029 0.0028 0.0029 0.0036 0.0038 0.0018 

0.0024 0.0028]} 



331 
 

                nruns: 50 

              nsample: 200 

          plotresults: 0 

               sample: 'train' 

         samplemethod: 'direct' 

         smoothmethod: 'medianfilter' 

            smoothpar: 5 

    sprtdetectability: [] 

           sprtmethod: 'default' 

        sprttolerance: 3 

        uicmthreshold: 0.5000 

           uicmwindow: 20 

          uncertainty: [] 

         uncertmethod: 'analytic' 

        variablenames: {1x8 cell} 

    waveletparameters: {[]} 

 

model = modchar(model,test); 

attributes = model.attributes 

 

attributes =  

 

             accuracy: [1x8 double] 

        allowclipping: 1 
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                alpha: 0.0100 

      autosensitivity: [0.4066 0.4933 0.3918 0.6354 0.5241 0.5263 

0.5254 0.5624] 

                 beta: 0.1000 

                 bias: [0 0 0 0 0 0 0 0] 

           biasmethod: 'mse' 

     crosssensitivity: [0.2200 0.2513 0.2306 0.2539 0.2003 0.2643 

0.2248 0.2470] 

              display: 1 

        driftvariable: 'all' 

                error: [1x1 struct] 

    eulmdetectability: [0.0030 0.0034 0.0029 0.0052 0.0042 0.0029 

0.0033 0.0039] 

        eulmtolerance: 0.0100 

           fdetmethod: 'eulm' 

          groupeditor: 1 

               groupi: {[1 2 3 4 5 6 7 8]} 

           groupnames: {'Group 1'} 

         groupoverlap: 0 

             interval: 'ci' 

     kernelparameters: {[]} 

             maxdrift: 2 

                 name: 'Model of Data' 

        noisevariance: {[0.0029 0.0028 0.0029 0.0036 0.0038 0.0018 

0.0024 0.0028]} 

                nruns: 50 
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              nsample: 200 

          plotresults: 0 

               sample: 'train' 

         samplemethod: 'direct' 

         smoothmethod: 'medianfilter' 

            smoothpar: 5 

    sprtdetectability: [0.0037 0.0036 0.0029 0.0041 0.0035 0.0027 

0.0032 0.0034] 

           sprtmethod: 'default' 

        sprttolerance: 2.4421 

        uicmthreshold: 0.5000 

           uicmwindow: 20 

          uncertainty: [0.1080 0.1060 0.1078 0.1207 0.1226 0.0845 

0.0976 0.1057] 

         uncertmethod: 'analytic' 

        variablenames: {1x8 cell} 

    waveletparameters: {[]} 
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optmodel 

Optimize model architecture 

Syntax 

BestModel = OPTMODEL(Model,Query,'method','flag',values,...) 

Description 

This function optimizes the architecture of an empirical model. 

BestModel = OPTMODEL(Model,Query,'method','flag',values,...) optimizes Model with Query 

according to the specified method and model specific architecture settings defined by the 

flag/value pairs (see initmodel). The optimization method may be set by any of the following 

character strings: 

   'error'         error 

   'uncertainty'   uncertainty 

For architecture settings that are strings, the values must be entered within {}. 

This function performs a combinatorial grid search of the provided architecture settings and 

returns the model that has the minimum error or uncertainty. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X(:,[1:4 6:9])); 

train = x(1:200,:); 

test = x(201:800,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false); 
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starting_architecture = model.architecture 

 

starting_architecture =  

 

    bandwidth: 0.5000 

     distance: 'euclid' 

         nmem: 100 

         type: 'aakr' 

     vsmethod: 'x' 

 

 

p = runmodel(model,test); 

starting_error = mean(mean((p-test).^2)) 

 

starting_error = 

 

    0.0017 

 

h = [0.2 0.5 1.0 2.0]; 

n = [25 50 100]; 

v = {'x' 'm' 's'}; 

 

bestmodel = 

optmodel(model,test,'error','bandwidth',h,'nmem',n,'vsmethod',v); 
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best_architecture = bestmodel.architecture 

 

best_architecture =  

 

    bandwidth: 1 

     distance: 'euclid' 

         nmem: 100 

         type: 'aakr' 

     vsmethod: 'm' 

 

p = runmodel(bestmodel,test); 

best_error = mean(mean((p-test).^2)) 

 

best_error = 

 

    0.0010 

 

percent_improvement = ((starting_error-best_error)/starting_error)*100 

 

percent_improvement = 

 

   38.7391 
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runmodel 

Run model simulation 

Syntax 

[P R] = RUNMODEL(Model,Query) 

[P R] = RUNMODEL(Model,Query,Display,PlotResults) 

[P R] = RUNMODEL(Model,Predictor) 

[P R] = RUNMODEL(Model,Predictor,Response) 

[P R] = RUNMODEL(Model,Predictor,Response,Display,PlotResults) 

Description 

This function runs a simulation of an empirical model for a set of query data. 

[P R] = RUNMODEL(Model,Query) simulates the autoassociative model Model with the query 

data Query.  This function returns the model predictions P and a reliability metric R.  The 

reliability metric R can have values on [0,1], where a value of 1 indicates a reliable estimate. 

[P R] = RUNMODEL(Model,Query,Display,PlotResults) runs simulation of an autoassociative 

model and overrides the display and plotresults attributes of Model. 

[P R] = RUNMODEL(Model,Predictor) simulates the inferential model Model with the query 

predictor variables Predictor.  This usage does not plot the results of the simulation since the 

target values are not supplied. 

[P R] = RUNMODEL(Model,Predictor,Response) simulates the inferential model Model with the 

query predictor variables Predictor and their target responses Response. 

[P R] = RUNMODEL(Model,Predictor,Response,Display,PlotResults) runs simulation of an 

inferential model and overrides the display and plotresults attributes of Model. 

Example 

clear; 

load redundantsensors; 
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x = cleandata(X(:,[1:4 6:9])); 

train = x(1:200,:); 

test = x(201:800,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false); 

 

p = runmodel(model,test); 

 

clf reset; 

t = 1:size(test,1); 

plot(t,test(:,1),'k.',t,p(:,1),'b','LineWidth',1.5); 

title('AAKR Predictions for X_1','FontWeight','Bold'); 

legend('Test Data','Predictions'); 
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setmsa 

Set model structure attributes 

Syntax 

Model = SETMSA(Model,'attribute',value,...) 

Description 

This function sets one or more of a model's attributes. 

Model = SETMSA(Model,'attribute',value,...) sets a series of model structure attributes to the 

supplied values. 

The model structure attributes may be set by any of the following flag/value pairs, where the 

default values are contained in parenthesis: 

   'allowclipping'     allow prediction clipping (true) 

   'alpha'             SPRT false alarm probability (0.01) 

   'beta'              SPRT missed alarm probability (0.1) 

   'biasmethod'        bias estimation method ('mse') 

   'display'           display progress (true) 

   'driftvariable'     model metric drift variables ('all') 

   'eulmtolerance'     EULM tolerance (0.01) 

   'fdetmethod'        fault detection method ('eulm') 

   'groupeditor'       launch group editor after grouping (true) 

   'groupi'            group indices ([1 2 ... NumVar]) 

   'groupnames'        group names ('Group 1') 

   'groupoverlap'      allow group overlapping (false) 

   'interval'          uncertainty interval ('ci') 

   'maxdrift'          model metric maximum drift in STD (2) 
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   'name'              data set name ('Data') 

   'nruns'             number of iterations (50) 

   'nsample'           number of samples (NumTrainObs) 

   'plotresults'       plot results (true) 

   'sample'            Monte Carlo sample definition ('train') 

   'samplemethod'      noise sampling method ('direct') 

   'smoothmethod'      smoothing method ('medianfilter') 

   'smoothpar'         smoothing parameter (5) 

   'sprtmethod'        SPRT detection method ('default') 

   'sprttolerance'     SPRT mean tolerance (3) 

   'uicmthreshold'     UICM threshold (0.50) 

   'uicmwindow'        UICM window (100 if NumObs>1,000 or NumObs/10) 

   'uncertmethod'      uncertainty estimation method ('analytic') 

   'variablenames'     variable names ('Variable i' & i = 1-NumVar) 

Example 

clear; 

load redundantsensors; 

model = initmodel('aakr',X(1:200,[1:4 6:9])); 

model = newgroup(model,1:3,'First Group'); 

model = newgroup(model,4:6,'Second Group'); 

model = newgroup(model,7:8,'Third Group'); 

attributes = model.attributes 

 

attributes =  
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             accuracy: [] 

        allowclipping: 1 

                alpha: 0.0100 

      autosensitivity: [] 

                 beta: 0.1000 

                 bias: [] 

           biasmethod: 'mse' 

     crosssensitivity: [] 

              display: 1 

        driftvariable: 'all' 

                error: [] 

    eulmdetectability: [] 

        eulmtolerance: 0.0100 

           fdetmethod: 'eulm' 

          groupeditor: 1 

               groupi: {[1 2 3]  [4 5 6]  [7 8]} 

           groupnames: {'First Group'  'Second Group'  'Third Group'} 

         groupoverlap: 0 

             interval: 'ci' 

     kernelparameters: {[]} 

             maxdrift: 2 

                 name: 'Model of Data' 

        noisevariance: {[0.0142 0.0131 0.0134]  [0.0036 0.0038 0.0026]  

[0.0026 0.0028]} 
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                nruns: 50 

              nsample: 200 

          plotresults: 1 

               sample: 'train' 

         samplemethod: 'direct' 

         smoothmethod: 'medianfilter' 

            smoothpar: 5 

    sprtdetectability: [] 

           sprtmethod: 'default' 

        sprttolerance: 3 

        uicmthreshold: 0.5000 

           uicmwindow: 20 

          uncertainty: [] 

         uncertmethod: 'analytic' 

        variablenames: {1x8 cell} 

    waveletparameters: {[]} 

 

model = setmsa(model,'smoothmethod','kernel','smoothpar',2); 

model = setmsa(model,'interval','pi','sample','both'); 

attributes = model.attributes 

 

attributes =  

 

             accuracy: [] 
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        allowclipping: 1 

                alpha: 0.0100 

      autosensitivity: [] 

                 beta: 0.1000 

                 bias: [] 

           biasmethod: 'mse' 

     crosssensitivity: [] 

              display: 1 

        driftvariable: 'all' 

                error: [] 

    eulmdetectability: [] 

        eulmtolerance: 0.0100 

           fdetmethod: 'eulm' 

          groupeditor: 1 

               groupi: {[1 2 3]  [4 5 6]  [7 8]} 

           groupnames: {'First Group'  'Second Group'  'Third Group'} 

         groupoverlap: 0 

             interval: 'pi' 

     kernelparameters: {[1x1 struct]  [1x1 struct]  [1x1 struct]} 

             maxdrift: 2 

                 name: 'Model of Data' 

        noisevariance: {[0.0161 0.0155 0.0154]  [0.0085 0.0072 0.0042]  

[0.0042 0.0044]} 

                nruns: 50 
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              nsample: 200 

          plotresults: 1 

               sample: 'both' 

         samplemethod: 'direct' 

         smoothmethod: 'kernel' 

            smoothpar: 2 

    sprtdetectability: [] 

           sprtmethod: 'default' 

        sprttolerance: 3 

        uicmthreshold: 0.5000 

           uicmwindow: 20 

          uncertainty: [] 

         uncertmethod: 'analytic' 

        variablenames: {1x8 cell} 

    waveletparameters: {[]} 
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sprtn 

SPRT fault detection for a multivariate normal distribution 

Syntax 

[FHyp FScore] = SPRTN(M,V,Error) 

[FHyp FScore] = SPRTN(M,V,Error,Alpha,Beta,Tol) 

[FHyp FScore] = SPRTN(M,V,Error,'method') 

[FHyp FScore] = SPRTN(M,V,Error,'method',Alpha,Beta,Tol) 

Description 

This function uses the Sequential Probability Ratio Test (SPRT) for a multivariate normal 

distribution to detect anomalies. 

[FHyp FScore] = SPRTN(M,V,Error) detects anomalies with the SPRT by comparing the mean 

of the multivariate error distribution Error to a training distribution with mean M and variance V.  

The default false alarm probability (Alpha) of 0.01 (1%), missed alarm probabilitiy (Beta) of 0.1 

(10%), and mean tolerance of 3 standard deviations are used. 

[FHyp FScore] = SPRTN(M,V,Error,Alpha,Beta,Tol) detects anomalies with the SPRT using the 

supplied false alarm probability Alpha, missed alarm probability Beta, and mean tolerance Tol in 

standard deviations (STD) (i.e. a tolerance of 2 corresponds to 2 STDs).  If any of the options are 

not supplied their respective default value will be used. 

[FHyp FScore] = SPRTN(M,V,Error,'method') detects anomalies according to the specified 

method.  The detection method may be set to any of the following character strings: 

   'chien'     Chien's one-sided test 

   'default'   default two-sided test 

[FHyp FScore] = SPRTN(M,V,Error,'method',Alpha,Beta,Tol) detects anomalies according to the 

specified method using the supplied detection options. 
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This function returns a matrix of fault hypotheses FHyp and a matrix of fault scores FScores 

which identify the character of the fault.  The values in FScores are the sum of the indicators for 

the four tests performed by the SPRT.  The indicators may be any of the following integer values. 

   positive shift in mean (+M)        1 

   negative shift in mean (-M)       10 

Example 

clear; 

load redundantsensors; 

x = cleandata(X); 

train = x(1:200,:); 

test = x(201:802,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false); 

 

dev = usmoddata(model,model.data.sdev); 

deverror = runmodel(model,dev)-dev; 

 

alpha = 0.05; 

beta = 0.10; 

[m v t] = trainsprt(deverror,deverror,alpha,beta); 

 

testerror = runmodel(model,test)-test; 

[fhyp fscore] = sprtn(m,v,testerror,alpha,beta,t); 
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clf reset; 

sprtplot(m,testerror,fhyp,5) 
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uicm 

UICM fault detection 

Syntax 

[FHyp FScore] = UICM(Pred,PredU,Target,Thresh,Window) 

Description 

This function performs uncertainty interval coverage monitoring fault detection. 

[FHyp FScore] = UICM(Pred,PredU,Target,Thresh,Window) detects faults by comparing the 

local uncertainty interval, defined by Pred and its uncertainty PredU, coverage of Window 

observations with a threshold Thresh. 

Example 

clear; 

load redundantsensors; 

x = cleandata(X); 

train = x(1:200,:); 

test = x(201:802,:); 

 

model = initmodel('aakr',train); 

model = setmsa(model,'plotresults',false,'interval','pi'); 

 

p = runmodel(model,test); 

model = modchar(model); 

pu = ones(size(test,1),1)*model.attributes.uncertainty; 

[fhyp fscore] = uicm(p,pu,test,0.5,20); 
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clf reset; 

uicmplot(fhyp,fscore,5); 
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unscore 

Un-scale data 

Syntax 

X = UNSCORE(XS,XMean,XSTD) 

Description 

This function un-scales mean center, unit variance scaled data. 

X = UNSCORE(XS,XMean,XSTD) un-scales XS with the scaling means XMean and standard 

deviations XSTD. 

The dimension of X and XS is NumObs x NumVars, where NumObs is the number of 

observations and NumVars is the number of variables.  The dimension of XMean and XSTD is 1 

x NumVar. 

Example 

clear; 

load redundantsensors; 

[xs xm xstd] = zscore1(X); 

 

m = mean(xs) 

 

 

m = 

 

  1.0e-011 * 

 



352 
 

    0.0090   -0.0466   -0.1305    0.1928   -0.0167    0.0522   -0.0341    

0.1083   -0.0587 

 

 

 

v = var(xs) 

 

 

v = 

 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    

1.0000    1.0000 

 

 

 

x = unscore(xs,xm,xstd); 

 

m = mean(x) 

 

 

m = 

 

   61.3521   62.1441   61.8044   63.4647   62.5148   61.8944   61.0898   

61.6286   61.9673 
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v = var(x) 

 

 

v = 

 

    0.0145    0.0137    0.0137    0.0055    0.0497    0.0043    0.0041    

0.0047    0.0035 
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vectsel 

Vector selection 

Syntax 

[S SI NSI] = VECTSEL(X,'method',N) 

Description 

This function selects representative vectors from a set of data. 

[S SI NSI] = VECTSEL(X,'method',N) selects the N representative vectors from X according to 

'method'.  This function returns the selected vectors S, the indices of the selected vectors SI, and 

the indices that were not selected NSI. 

The dimension of X is MxP, where M is the number of observations and P is the number of 

variables.  The dimension of S is NxP, SI is 1xN, and NSI is 1x(M-N). 

The selection method may be set to any of the following characters: 

   'a'         select all 

   'f'         fuzzy c-means clustering 

   'h'         Adeli-Hung clustering 

   'm'         min-max 

   's'         sort-select 

   'x'         combination of 'm' and 's' 

 

For fuzzy c-means clustering the number of memory vectors controls the number of cluster 

centers.  The number of selected vectors may or may not be equal to N. 

Example 

clear; 

t = 1:1:1000; 
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x1 = sin(t./150); 

x2 = 1.2.*sin(t./200); 

x = [x1' x2']; 

 

[sv si] = vectsel(x,'m',10) 

 

 

sv = 

 

    0.0067    0.0060 

    1.0000    1.1095 

    0.0133    0.0120 

    0.8666    1.2000 

   -0.9631   -0.2248 

    0.7925    1.1941 

   -0.9613   -0.2189 

    0.7884    1.1935 

   -1.0000   -0.4600 

    0.3742   -1.1507 

 

 

si = 

 

  Columns 1 through 8  
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           1         236           2         314         666         

334         665         335 

 

  Columns 9 through 10  

 

         707        1000 

 

 

 

clf reset; 

plot(t,x(:,1)); 

hold on; 

plot(si,sv(:,1),'r.','MarkerSize',15); 

hold off; 

axis([0 1000 -1.75 1.75]); 

xlabel('Observation Number'); 

ylabel('X_1'); 

title('Min-Max Vector Selection Results','FontWeight','Bold'); 

legend('Data','Selected Vectors'); 
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[sv si] = vectsel(x,'s',10) 

 

 

sv = 

 

   -0.4780    0.4801 

   -0.2684    0.6592 

   -0.8296    0.0619 

   -0.9135   -0.0940 

   -0.9716   -0.2541 

    0.3662    1.0507 

   -0.4468   -1.1283 

   -0.6517   -1.0339 

    0.9001    0.8936 

    0.8564    1.1999 
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si = 

 

   546   512   618   644   671   415   873   836   168   317 

 

 

 

clf reset; 

plot(t,x(:,1)); 

hold on; 

plot(si,sv(:,1),'r.','MarkerSize',15); 

hold off; 

axis([0 1000 -1.75 1.75]); 

xlabel('Observation Number'); 

ylabel('X_1'); 

title('Sort-Select Vector Selection Results','FontWeight','Bold'); 

legend('Data','Selected Vectors'); 
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[sv si] = vectsel(x,'x',10) 

 

 

sv = 

 

   -1.0000   -0.4600 

    1.0000    1.1095 

   -0.0032   -1.2000 

    0.8666    1.2000 

   -0.4780    0.4801 

   -0.1247    0.7653 

    0.1165   -1.1954 

   -0.2343   -1.1812 

    0.5325    1.1213 

    0.9414    0.9547 
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si = 

 

   707   236   942   314   546   490   960   907   387   184 

 

 

 

clf reset; 

plot(t,x(:,1)); 

hold on; 

plot(si,sv(:,1),'r.','MarkerSize',15); 

hold off; 

axis([0 1000 -1.75 1.75]); 

xlabel('Observation Number'); 

ylabel('X_1'); 

title('Combination Vector Selection Results','FontWeight','Bold'); 

legend('Data','Selected Vectors'); 
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vensample 

Venetian blind sampling 

Syntax 

[X1 X2] = VENSAMPLE(X) 

[X1 X2 ... XN] = VENSAMPLE(X,N) 

[X1 X2 ... XN SI] = VENSAMPLE(X,N) 

Description 

This function performs a Venetian blind sampling of a set of data. 

[X1 X2] = VENSAMPLE(X) samples X by breaking it into 2 consecutive bands.  X1 contains the 

first half of X and X2 contains the second half of X. 

[X1 X2 ... XN] = VENSAMPLE(X,N) samples X by breaking N consecutive bands.  Here, [X1 

X2 ... XN] are the N samples of X.  The number of observations in each band is NumObs/N. 

[X1 X2 ... XN SI] = VENSAMPLE(X,N) samples X returning the samples and the indices of the 

samples in a cell array SI, where SI{i} contains the indices of the ith sample. 

If NumObs is not a multiple of N, then the remaining observations are added to the last sample.  

For example, if you have 101 observations and would like 10 samples (i.e. N = 10), then the first 

nine samples would contain 10 observations and the tenth sample would conatin 11 observations. 

X may be either a matrix or data structure.  If X is a data structure, then [X1 X2 ... XN] are 

similar structures. 

Example 

clear; 

t = 1:1:1000; 

x1 = sin(t./150); 

x2 = 1.2.*sin(t./200); 
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xtarget = [x1' x2']; 

x = xtarget+0.2.*randn(size(xtarget)); 

 

[y1 y2 y3 si] = vensample(x,3); 

sample_indices = si 

 

 

sample_indices =  

 

    [333x1 double]    [333x1 double]    [334x1 double] 

 

 

 

data = initds(x); 

[data_half1 data_half2] = vensample(data) 

 

 

data_half1 =  

 

       attributes: [1x1 struct] 

             mean: [0.5993 0.8689] 

            sdata: [500x2 double] 

              std: [0.3944 0.3798] 

    structuretype: 'data' 
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data_half2 =  

 

       attributes: [1x1 struct] 

             mean: [-0.5765 -0.5040] 

            sdata: [500x2 double] 

              std: [0.4354 0.6532] 

    structuretype: 'data' 
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zscore1 

Scale data 

Syntax 

[XS XMean XSTD] = ZSCORE1(X) 

XS = ZSCORE1(X,XMean,XSTD) 

Description 

This function mean center, unit variance (MCUV) scales data. 

[XS XMean XSTD] = ZSCORE1(X) MCUV scales X, returning the scaled data XS, scaling 

mean XMean, and scaling standard deviation XSTD. 

XS = ZSCORE1(X,XMean,XSTD) MCUV scales X with the scaling mean XMean and scaling 

standard deviation XSTD.  This implementation is used to scale new data according to traininig 

parameters. 

The dimension of X and XS is NumObs x NumVars, where NumObs is the number of 

observations and NumVars is the number of variables.  The dimension of XMean and XSTD is 1 

x NumVar. 

Example 

clear; 

load redundantsensors; 

[xs xm xstd] = zscore1(X); 

 

m = mean(xs) 

 

 

m = 



366 
 

 

  1.0e-011 * 

 

    0.0090   -0.0466   -0.1305    0.1928   -0.0167    0.0522   -0.0341    

0.1083   -0.0587 

 

 

 

v = var(xs) 

 

 

v = 

 

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    

1.0000    1.0000 

 

 

 

x = unscore(xs,xm,xstd); 

 

m = mean(x) 

 

 

m = 
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   61.3521   62.1441   61.8044   63.4647   62.5148   61.8944   61.0898   

61.6286   61.9673 

 

 

 

v = var(x) 

 

 

v = 

 

    0.0145    0.0137    0.0137    0.0055    0.0497    0.0043    0.0041    

0.0047    0.0035 
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PEP Functions List 

The Process and Equipment Prognostics (PEP) Toolbox is designed to work with the previously 

developed Process and Equipment Monitoring (PEM) Toolbox to develop a suite of health 

management tools. The PEP includes functionality to perform the three types of prognostic 

models described previously in this guide. Each of the functions currently integrated in the PEP 

Toolbox are described below, categorized by function purpose.  This list is continuously being 

updated as the PEP toolbox is developed and improved. 

Prognostic Model Function Calls 

initprog  Initialize prognostic model structure 

runprog  Run prognostic model 

Type I Models 

initTypeI  Initialize a Type I (reliability-based) prognostic model 

runTypeI  Run a Type I prognostic model 

Type II Models 

initMC   Initialize a Markov Chain prognostic model 

MCprobs  Calculate the transition probability matrix and initial state probability vector 

fitMC   Map operating conditions to system degradation  

runMC   Run a Markov Chain prognostic model  

initPHM  Initialize a Proportional Hazards prognostic model  

runPHM  Run a Proportional Hazards prognostic model  

initShock  Initialize a shock prognostic model 

runShock  Run a shock prognostic model  

Type III Models 
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initGPM  Initialize a General Path Model prognostic model 

fitGPM   Determine GPM parametric model fit 

initBayes  Calculate Bayesian prior distribution 

threshGPM  Calculate GPM failure threshold 

runGPM  Run a GPM prognostic model 

initPF  Initialize Particle Filter model 

fitPF  Determine PF parametric model fit  

threshPF Calculate PF failure threshold 

initcoeff Calculate PF coefficient prior distribution 

runPF  Run PF prognostic model 

Parameter Identification 

optparam  Identify near-optimal prognostic parameter 

paramfit  Prognostic parameter fitness 

ppmetrics  Prognostic parameter suitability metrics 

paramgen  Generate a population of prognostic parameters 

Data Processing 

MCdata  Discretize operating condition data 

residgen  Generate monitoring system residuals using a PEM model  

wtd_quantile  Calculate quantiles according to weighted inputs 
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PEP Functions Descriptions 

fitGPM 

Determine GPM parametric model fit 

Syntax:   

[Fit Ytransform] = FITGPM(prognosticparameters)  

Description: 

This function determines the best fit for a GPM prognostic model between linear, quadratic, and 

exponential fits. 

 

 [Function Ytransform] = FITGPM(prognosticparameters) determines the best fit for the historic 

paths contained in the cell array prognosticparameters. The function considers linear, quadratic, 

and exponential fits. Ytransform gives the transformation of y needed to make the fit linear in 

parameters.  This has value @(y)log(y) for exponential functions and @(y)y (indicating no 

transformation is needed) for linear and quadratic functions. 

 

Example: 

load degradation 

whos 

 

Name           Size            Bytes  Class     Attributes 

 

  failed         1x25            15376  cell                 

  failtimes      1x5                40  double               
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  unfailed       1x5              1536  cell               

 

failval = NaN(1,25); 

failtime = NaN(1,25); 

figure 

hold on 

for i = 1:25 

    plot(failed{i}(:,1),failed{i}(:,2),'b') 

    failval(i) = failed{i}(end,2); 

   failtime(i) = failed{i}(end,1); 

end 

plot(failtime,failval,'r*') 

hold off 

xlabel('Time (cycles)') 

ylabel('Prognostic Parameter') 

title('Population of Prognostic Parameters') 
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[fit ytrans]=fitGPM(failed) 

 

fit =  

 

    @(x)x.^2    @(x)x    @(x)1 

 

ytrans =  

 

    @(y)y   
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fitMC 

Map operating conditions to system degradation	

Syntax:    

b = FITMC(operatingconditions,model,threshold) 

Description: 

This function determines the coefficients to map time spent in each operating condition to system 

degradation.  

b = MCFIT(operatingconditions,model,threshold) calculates the appropriate coefficients to fit the 

time spent in each operating condition, calculated from the operating conditions progressions to 

failure contained in the cell array operatingconditions, to the model (given by an anonymous 

function of the form @(b,t)f(b,t)) with ending value equal to threshold 

Example: 

 

load tire 

whos 

 

Name        Size              Bytes  Class    Attributes 

 

  fail        1x100            297936  cell                

  unfail      1x3                3436  cell 

 

fit = @(b,t)t*b; 

 

fitMC(fail,fit,100) 
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ans = 

 

    0.1006 

    0.2488 

    0.5003 
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fitPF 

Determine PF parametric model fit 

Syntax: 

[Function xtransform] = FITPF(prognosticparameters) 

Description: 

This function determines the best fit for a PF prognostic model between linear, quadratic, and 

exponential recursive fits. 

[Function xtransform] = FITPF(prognosticparameters) determines the best fit for the historic 

paths contained in the cell array prognosticparameters. The function considers linear, quadratic, 

and exponential recursive fits. These "fits" are the additive portion of xt[x(n)] = xt[x(n-1)] + 

f(x(0:n-1),t(0:n)), where xt[] is the appropriate xtransform. This has value @(x)log(x) for 

exponential functions and @(x)x (indicating no transformation is needed) for linear and quadratic 

functions. 

Example:  

 

load PFdata 

whos 

 

  Name            Size            Bytes  Class     Attributes 

 

  RUL_actual      1x50              400  double               

  gtdata_trn      1x50            65600  cell                 

  gtdata_tst      1x50            65600  cell                 

  trn_data        1x50            38088  cell                 

  tst_data        1x50            30904  cell     



377 
 

 

[fit xtransform] = fitPF(trn_data)        

 

fit =  

 

    @(t,t1)t.^2-t1.^2    @(t,t1)t-t1 

 

 

xtransform =  

 

    @(x)x 
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initBayes 

Calculate Bayesian prior distribution 

Syntax:   

[prior nvar] = initBayes(progparam,f,yt) 

Description: 

This function calculates the initial Bayesian prior distribution for a GPM model. 

  

Prior = INITBAYES(prognosticparameters,fit,ytransform) calculates the Bayesian prior 

distribution for the coefficients, b, of the functional fit f(b,t) where fit is a cell array of the form 

f(x) = {@(x)f1(x) @(x)f2(x) ... @(x)fn(x)} and ytransform is a function handle P(y) = @(y)fy(y), 

where P(y) = f(x)*b for the historic prognostic parameter paths contained in the cell array 

prognosticparameters. It is assumed that the coefficients are normally distributed with mean and 

variance calculated from the population of fits. Prior is a matrix which contains the mean value 

for each parameter in the first row and the standard deviation in the second row: 

 

 

Example: 

 

load degradation 

whos 

 

  Name          Size            Bytes  Class     Attributes 

 

  RULs          1x5                40  double               

  failed        1x25            15376  cell                 



379 
 

  unfailed      1x5              1536  cell 

 

[fit, ytransform] = fitgpm(failed) 

 

fit =  

 

    @(x)x.^2    @(x)x    @(x)1 

 

 

ytransform =  

 

    @(y)y 

 

 [prior noisevar] = initBayes(failed,fit,ytransform) 

 

prior = 

 

    6.1253    0.1396    0.0893 

    3.4856    0.3286    0.0365 

 

 

noisevar = 

 

    0.0025	
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initCoeff 

Calculate PF coefficient prior distribution 

Syntax: 

[Prior noisevar] = INITCOEFF(prognosticparameters,fit,xtransform) 

Description: 

This function calculates the initial Bayesian prior distribution for a PF model. 

[Prior noisevar] = INITCOEFF(prognosticparameters,fit,xtransform) calculates the Bayesian 

prior distribution for the coefficients, b, of the functional fit f(b,t) where fit is a cell array of the 

form   f(t,t1) = {@(t,t1)f1(t,t1) @(t,t1)f2(t,t1) ... @(t,t1)fn(t,t1)} and xtransform is a function 

handle P(x) = @(x)fx(x).  x1 and t1 indicate the respective values at the previous observation, 

where P(x) = P(x1)+f(t,t1)*b for the historic prognostic parameter paths contained in the cell 

array prognosticparameters. It is assumed that the coefficients are normally distributed with mean 

and variance calculated from the population of fits. Prior is a matrix that contains the mean value 

for each parameter in the first row and the standard deviation in the second row: 

 

noisevar is a scalar which gives an estimate of the variance of the measurement noise. 

Example:  

 

load PFdata 

whos 

 

  Name            Size            Bytes  Class     Attributes 

 

  RUL_actual      1x50              400  double               

  gtdata_trn      1x50            65600  cell                 
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  gtdata_tst      1x50            65600  cell                 

  trn_data        1x50            38088  cell                 

  tst_data        1x50            30904  cell     

 

[fit xtransform] = fitPF(trn_data);        

 

[prior noisevar] = initCoeff(trn_data,fit,xtransform) 

 

prior = 

 

    0.0002    0.0002 

    0.0000    0.0041 

 

 

noisevar = 

 

    0.0012 
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initGPM 

Initialize a General Path Model prognostic model	

Syntax:   

model = initGPM(prognosticparameters) 

model = initGPM(prognosticparameters,'flag',value,...)  

Description: 

This function initializes an GPM prognostic toolbox structure 

Model = INITGPM(prognosticparameters) initializes a GPM model using the historic paths 

contained in the cell array prognosticparameters. Each cell should be an n x 1 matrix of 

prognostic parameter values, or an n x 2 matrix of time with parameters. The most appropriate fit 

is chosen from quadratic, linear, cubic, and exponential fits. 

 

Model = INITGPM(prognosticparameters,'flag',value,...) initializes a GPM model using the 

historical prognostic parameters and the values indicated by the 'flag' - value pairs. 'flag' may be 

set to any of the following: 

'bayesian' (false)      Use Bayesian updating to include prior information in function fitting (true 

or false)  

'noise' (calculated using enovar() in PEM) An estimate of the noise variance  

'updateinterval' (1) Number of time steps between fitting updates (n, an integer) 'once' 

indicates the prior will be used once after all data is collected (in a non-                                

dynamic way) 

'fit' (optimization) Functional fit to use for GPM fitting (entered as a cell array of function 

handles, i.e. f = {@(x)f1(x) @x(f2(x) ... @(x)fn(x)} where P(x) = f(x)*B). Function must be 

linear in parameters for this type of entry. If a non-zero intercept is required, an "@(x)1" entry 

must be included. If no fit is given, an optimization is performed for the best fit among linear, 

quadratic, and exponential models. 
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'ytransform' (@(y)y) Functional transformation of y to make the prognostic parameter linear in 

parameters, i.e. if y = a*exp(bx) then log(y) = log(a)+b*x, entered as 'ytransform' = @(y)log(y) 

and 'fit' = {@(x)1 @(x)x} 

'threshold' (calculated) Specify the critical threshold value (for hard thresholds) or the mean and 

standard deviation in the form [m s] (for threshold distributions) 

'thresholdtype' ('pdf') Hard threshold or distribution ('hard'or 'pdf') 

'threshcon' (0.95) The confidence level at which the threshold is calculated.  Only 

applicable for "hard" type thresholds. 

'npop' (1000) Number of Monte Carlo simulations used to make uncertainty estimates. 

'allownegative' (false) Allow negative RUL estimates, false, true, or 'push' 

 

Example: 

 

load degradation 

whos 

   

Name          Size            Bytes  Class     Attributes 

 

  RULs          1x5                40  double               

  failed        1x25              15376  cell                 

  failtime      1x25             200  double               

  failval       1x25              200  double               

  i                 1x1                  8  double               

  unfailed      1x5              1536  cell                 
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model = initGPM(failed) 

 

model =  

 

              type: 'GPM' 

          bayesian: 1 

    updateinterval: 1 

               fit: {[@(x)x.^2]  [@(x)x]  [@(x)1]} 

        ytransform: @(y)y 

         threshold: [1.5559 0.0514] 

     thresholdtype: 'pdf' 

         threshcon: 0.9500 

              npop: 1000 

          noisevar: 0.0025 

     bayesianprior: [2x3 double] 

     allownegative: 0 
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initMC 

Initialize a Markov Chain prognostic model	

Syntax:   

Model = INITMC(operatingconditions) 

Model = INITMC(operatingconditions,'flag',value,...) 

Description: 

This function initializes an MC model prognostics toolbox structure. 

Model = INITMC(operatingconditions) initializes an MC model using the historic operating 

parameter progressions to failure contained in the cell array operatingconditions.  These 

conditions should be discrete and numbered 1-n (no ordinal relation is implied by the numbering). 

The degradation parameter is assumed to be a weighted linear combination of the time spent in 

each operating condition. Initial degradation is assumed to be identically zero.  The critical failure 

threshold for this parameter is assumed to be 100 (effectively measuring 100% degradation). If 

the data contained in operatingconditions is not numbered from 1 to n, the data may be 

reformatted in MCdata() prior to initializing the model. 

Model = INITMC(operatingconditions,'flag',value,...) initializes an MC model using the historic 

operating condition progressions to failure and the user-supplied inputs indicated by the 'flag'-

value pairs. 'flag' may be set to any of the following, with the default values given: 

'Q' (calculated) The transition probability matrix for moving between operating conditions 

'u' (calculated) The initial state probability vector 

'f' (weighted sum of time spent in each condition) A function for mapping operating conditions to 

a degradation parameter. Should be input as an anonymous function  @(b,t)f(b,t) where b is a 

column vector of coefficients and t is a row vector of time spent in each condition, 1-n 

'b' (calculated from data)  The vector of coefficients which is used with f to map the operating 

conditions to a degradation parameter 

'threshold' (100) The critical failure threshold applied to the degradation parameter to indicate 

failure 
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'npop' (1000)  The number of Monte Carlo simulations generated for each RUL estimation 

'RULcon' (0.95) The point in the resulting RUL distribution which defines the RUL. 0.95 

indicates that RUL estimate is the point where the reliability of the system is 0.95 (Failure 

probability is 0.05) 

Example: 

load tire 

whos  

 

  Name        Size              Bytes  Class    Attributes 

 

  fail        1x100            303136  cell                

  unfail      1x3                3592  cell       

  

figure 

plot(fail{1},'.') 

axis([-inf inf 0 4]) 

xlabel('Time (cycles)') 

ylabel('Operating Condition') 

title('Example Operating History') 
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model = initMC(fail) 

 

model =  

 

         type: 'MC' 

            Q: [3x3 double] 

            u: [0.2600 0.5500 0.1900] 

            f: @(b,t)t*b 

            b: [3x1 double] 

    threshold: 100 

         npop: 1000 

       RULcon: 0.9500 
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model.Q 

ans = 

 

    0.4963    0.3092    0.1945 

    0.4047    0.3935    0.2018 

    0.2473    0.1540    0.5988 

 

model.b 

ans = 

 

    0.1006 

    0.2488 

    0.5003 
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initPF 

Initialize Particle Filter model 

Syntax: 

Model = INITPF(prognosticparameters) 

Model = INITPF(prognosticparameters,'flag',value,...) 

Description: 

This funciton initializes a particle filter prognostic toolbox structure. 

Model = INITPF(prognosticparameters) initializes a PF model using the historic paths contained 

in the cell array prognosticparameters. The most appropriate recursive fit is chosen from 

quadratic, linear, and exponential fits. 

Model = INITPF(prognosticparameters,'flag',value,...) initializes a PF model using the historical 

prognostic parameters and the values indicated by the 'flag' - value pairs. 'flag' may be set to any 

of the following: 

'bayesian' (true) Use Bayesian updating to adjust model parameter distributions when re-sampling 

'noisevar' (calculated using enovar() in PEM) An estimate of the noise variance  

'fit' (optimized) Functional fit to use for PF recursive fitting (entered as a cellarray of recursive 

function handles, i.e. f = {@(x,x1)f1(x,x1) @(x,x1)f2(x,x1) ... @(x,x1)fn(x,x1)} where x is the 

current observation and x1 is the previous observation and P(x) = f(x)*B) Function must be linear 

in parameters for this type of entry. If a non-zero intercept is required, an "@(x)1" entry must be 

included. If no fit is given, an optimization is performed for the best fit among recursive linear, 

quadratic, and exponential models 

'transform' (@(y)y) Functional transformation of y to make the prognostic parameter linear in 

parameters, i.e. if the function is logarithmic, it can be considered as log(y) = log(y1)+b(x-x1), 

then ytransform = @(y)log(y) and fit = @(x,x1)x-x1 

'modcoeff' (calculated) Distribution of model coefficients for sampling for particle forward 

prediction 
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'threshold' (calculated) Specify the critical threshold value (for hard thresholds) or the mean and 

standard deviation in the form [m s] (for threshold distributions) 

'thresholdtype' ('pdf')  Hard threshold or distribution ('hard' or 'pdf') 

'threshcon' (0.95) The confidence level at which the threshold is calculated.  Only 

applicable for "hard" type thresholds 

'npart' (1000) Number of particles to simulate for each population 

'particlethresh' (0.5) Fraction of effective particles which causes particle/coefficient 

resampling 

'RULcon' (0.95) The point in the resulting RULdistribution which defines the RUL.  0.95 

indicates that RUL estimate is the point where the reliability of the system is 0.95 (Failure 

probability is 0.05) 

Example:  

 

load PFdata 

whos 

 

  Name            Size            Bytes  Class     Attributes 

 

  RUL_actual      1x50              400  double               

  gtdata_trn      1x50            65600  cell                 

  gtdata_tst      1x50            65600  cell                 

  trn_data        1x50            38088  cell                 

  tst_data        1x50            30904  cell     

 

model = initPF(trn_data) 
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model =  

 

              type: 'PF' 

               fit: {[@(t,t1)t.^2-t1.^2]  [@(t,t1)t-t1]} 

         transform: @(x)x 

          bayesian: 1 

          modcoeff: [2x2 double] 

    particlethresh: 0.5000 

     thresholdtype: 'pdf' 

         threshold: [1.5492 0.1044] 

          noisevar: 0.0012 

             npart: 1000 

            RULcon: 0.5000 
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initPHM 

Initialize a Proportional Hazards prognostic model	

Syntax:    

Model = INITPHM(cov,times)  

Model = INITPHM(cov,times,'flag',value...)    

Description: 

This function initializes a PHM prognostics toolbox structure.   

Model = INITPHM(cov,times) initializes a proportional hazards model with the covariates 

defined in the nxp matrix cov and the failure times in the nx1 column matrix times.  The baseline 

value is taken to be zero.   

Model = INITPHM(cov,times,'flag',value...) initializes a proportional hazards model using the 

covariates and failures times in the matrics cov and times, and the 'flag'-value pairs given.  'flag' 

may be set to any of the following, with the default values given: 

'frequency' (one for each observation) The jth element of this nx1 column vector indicates the 

number of times that the combination of the jth set of covariates and the jth failure time are 

observed together. 

'censoring' (all zeros)  The jth element of this nx1 column vector indicates whether that 

observation is a failure time (0) or a censored time (1). 

'baseline' (zero) This 1xp row vector indicates the baseline values for each of the covariates. 

'beta' (calculated) The coefficients of the Cox proportional hazards regression. 

'hazard' (calculated) The baseline cumulative hazard function given as a 2-column matrix 

with failure times in the first column and the corresponding estimated cumulative hazard rate in 

the second column. 

'RULcon' (0.95) The point in the resulting RUL distribution which defines the RUL. 0.95 

indicates that RUL estimate is the point where the reliability of the system is 0.95 (Failure 

probability is 0.05). 
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Example:  

load PHMchalldata 

whos 

 

  Name        Size                Bytes  Class     Attributes 

 

  RUL       259x1                  2072  double               

  trn         1x260            10350848  cell                 

  tst         1x259             6555280  cell     

 

trn_cov = cell(size(trn)); 

failtimes = NaN(numel(trn),1); 

for i = 1:length(trn) 

   trn_cov{i} = trn{i}(:,1:3); 

   failtimes(i) = length(trn{i}); 

end 

 

model = initPHM(trn_cov,failtimes)   

 

model =  

 

        type: 'PHM' 

        beta: [3x1 double] 

      hazard: [261x2 double] 
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    baseline: [0 0 0] 

      RULcon: 0.9500 
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initprog 

Initialize prognostic model structure 

Syntax:   

Model = INITPROG('type',...)  

Model = INITPROG('typeI',TTF)  

Model = INITPROG('typeI',TTF,censored)  

Model = INITPROG('typeI',TTF,censored,'distribution',distributiontype) 

Model = INITPROG('mc',operatingconditions)  

Model = INITPROG('mc',operatingconditions,'flag',value,...)  

Model = INITPROG('shock',...)  

Model = INITPROG('phm',...)  

Model = INITPROG('gpm',prognosticparameters) 

Model = INITPROG('gpm',prognosticparameters,'flag',value...) 

Model = INITPROG(‘pf’,prognosticparameters) 

Model = INITPROG(‘pf’,prognosticparameters,’flag’,value…) 

Description: 

This function initializes a Prognostics Toolbox model structure.   

Model = INITPROG('type',...) initializes a prognostic model of the kind specified by 'type'. 'type' 

may be set to any of the following strings: 

'typeI'   

'markovchain' (or 'mc') 

'shock' 

'proportionalhazards' (or 'phm') 
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'generalpath' (or 'gpm') 

‘particlefilter’ (or ‘pf’) 

For necessary inputs and available flag/value options, please see the appropriate individual “init” 

functions: initTypeI, initMC, initShock, initPHM, initGPM, initPF. 

Example: 

For examples of each model type, please see the appropriate init functions, as listed above.  To 

utilize the initprog wrapper function, simply indicate the appropriate type as the first input. 
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initShock  

Initialize a shock prognostic model 

Syntax:   

Model = INITSHOCK(shocks) 

Model = INITSHOCK(shocks,'flag',value,...)  

Description: 

This function initializes a shock model prognostics toolbox structure 

Model = INITSHOCK(shocks) initializes a shock model using the readings (such as vibration or 

current) which contain a progression of random shocks contained in the cell array shocks. Each 

cell may contain a vector of the measurement of interest or an nX2 matrix where the first column 

is time and the second column is the sensed value. Here, the indication of failure is the sum of the 

shock sizes. 

Model = INITSHOCK(shocks,'flag',value,...) initializes a shock model using the progression of 

random shocks contained in the cell array shocks and the values indicated by the 'flag' - value 

pairs. 'flag' may be set to any of the following: 

'operatingcond' (none) A cell array of column vectors that indicate the operating conditions for 

each shock progression.  The operating condition at each time step should be an integer from 1 to 

n, which indicates which of n discrete operating conditions the system is in.  This can account for 

the difference in probability of a shock occurring for each operating condition. This results in a 

Type II model. Note that this option CANNOT be used with a degradation dependant distribution. 

The function MCdata() can be used to put operating conditions into discrete groups numbered 1 

to n. Indicated in model structure as model.TypeII = true. 

'degdepend' (false) Parameter of the time distribution can be dependent on the degradation 

level, as might happen in a vibrating bearing or failing power supply.  This effectively makes the 

shock model a Type III model. Lambda is assumed to depend on the degradation according to a 

polynomial of degree 2 unless otherwise specified by 'timeorder'.  A non-polynomial function can 

be specified with 'timefcn'.  Note that this option CANNOT be used with operating condition 

information. Indicated in model structure as model.TypeIII = true. 
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'degcondition' Measurements of equipment degradation can be used to develop a degradation 

dependent shock model.  Input should be a cell array of degradation measures of the same size as 

shocks. 

'timeorder' (2) The order of polynomial used to describe the dependence on degradation. 

'timefcn'   (polynomial) An anonymous function of the form @(d)f(d) for degradation-dependent 

distributions. For instance, if the distribution is dependent on the exponential function, then the 

timefcn would be input as: @(b,d)exp(b(1)*d+b(2)) The parameters in b will be fit to the 

available data.  Notice that your function parameters must be a vector called 'b' to be fit. If they 

are known a priori, they can be specified with 'timecoef'. 

'timecoef' (fit) A vector which contains the coefficients of the degradation dependent function 

used to define the time distribution.   

'timepar' (distribution fit) Parameter of a static (not degradation dependent) time distribution, 

which is assumed to be exponential.  This is the lambda parameter of the exponential distribution. 

'magdist' (normal) Distribution of the magnitude of shocks ('constant', 'normal', 

'nonparametric'  or 'np') 

'magpar' (distribution fit) Parameters of magnitude distribution 

'minshock' (calculated) The minimum size of the input that is considered a shock.  It is 

calculated as the mean non-shock input value plus three standard deviations of the noise. 

'npop' (1000) The number of Monte Carlo simulations generated for each RUL estimation 

'RULcon' (0.50) The point in the resulting RULdistribution which defines the RUL. 0.5 indicates 

that RUL estimate is the point where the reliability of the system is 0.5 (Failure probability is 0.5) 

'thresholdtype' ('pdf') Hard threshold or distribution ('hard' or 'pdf') 

'threshold' (calculation) Specify the critical threshold value (for hard thresholds) or the mean and  

standard deviation in the form [m s] (for threshold distributions) 

'threshcon' (0.50) Confidence level for determining threshold. 

Example: 
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load shockdata 

whos 

  Name          Size              Bytes  Class     Attributes 

  shocks        1x100            173376  cell                 

  test        193x1                1544  double   

 

model = initshock(shocks,'degdepend',true,'timeorder',1) 

model =  

 

             type: 'Shock' 

         minshock: 3.0263 

           TypeII: 0 

          TypeIII: 1 

          timepar: [1x1 struct] 

          magdist: 'normal' 

           magpar: [1x1 struct] 

             npop: 1000 

    thresholdtype: 'pdf' 

        threshold: [1x1 struct] 

        threshcon: 0.5000 

           RULcon: 0.5000 
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initTypeI 

Initialize a Type I (reliability-based) prognostic model 

Syntax:   

Model = INITTYPEI(TTF) 

Model = INITTYPEI(TTF,censored) 

Model = INITTYPEI(TTF,censored,'distribution',distributiontype) 

Description: 

This function initializes a reliability-based prognostic model structure.   

Model = INITTYPEI(TTF) initializes a reliability-based prognostic model using the failure times 

in the vector TTF. This model uses a Weibull distribution to model failure times.   

Model = INITTYPEI(TTF,censored) initializes a model using the failure and censoring times in 

the vector TTF.  The variable censored indicates whether each observed time is a failure (0) or 

censored (1) time.   

Model = INITTYPEI(TTF,censored,'distribution',distributiontype) initializes a Type I model 

using the failure time distribution indicated by distributiontype.  distributiontype can be set to any 

of the following strings: 'weibull', 'exponential' (or 'exp'), 'normal'.  The default distribution type 

is Weibull.  Note that the variable censored may be omitted if all data points are actual failure 

times. 

Example: 

 

load failuretimes 

whos   

 

  Name                Size            Bytes  Class     Attributes 
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  failuretimes      135x1              1080  double                 

 

typeI = inittypeI(failuretimes) 

typeI.parameters 

histfit(failuretimes,10,'wbl')   

 

typeI =  

            type: [1x5 char] 

    distribution: [1x7 char] 

      parameters: [1x1 struct] 

            data: [1x1 struct] 

ans =  

     beta: 13.0851 

    theta: 127.5712 
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MCData 

Discretize operating condition data	

Syntax:   

[newoperatingconditions map] = MCDATA(operatingconditions)  

[newoperatingconditions map] = MCDATA(operatingconditions, 'flag',  value)  

Description:   

This function converts operating condition data into data needed for Markov Chain Models 

 [newoperatingconditions map] = MCDATA(operatingconditions) converts the operating 

condition progressions to failure contained in the cell array operatingconditions into conditions 

numbered 1-n (no ordinal relation is implied by the new numbers).  The progressions in the cell 

array operatingconditions may be of size nxm where n is the number of observations in one 

history and m is the number of variables which fully define the operating condition.  These values 

need to be discrete (or discretized by some outside method) to apply this function correctly. The 

output map is a matrix which indicates the relationship between the original operating conditions 

(of size 1xn) to an operating condition class. The first row in map defines the first operating 

condition, the second row, the second operating condition, and so on.   

[newoperatingconditions map] = MCDATA(operatingconditions, 'flag', value) separates the 

operating conditions progressions contained in the cell array operatingconditions into MC 

appropriate conditions.  The 'flag'/value pairs may be set to any of the following (defaults): 

'tol'   (0.10) The noise tolerance for separating operating conditions. 

'map'   (determined) The map for moving from measured operating conditions to the MC 

numbered conditions where the first row in map defines the first operating condition, the second 

row in map defines the second operating condition, and so on.  

Example: 

 

load PHMchalldata 

whos   
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  Name        Size                Bytes  Class     Attributes 

 

  RUL       259x1                  2072  double               

  trn         1x260            10337328  cell                 

  tst         1x259             6541812  cell                  

 

old_oc = cell(size(trn)); 

for i = 1:length(trn) 

    old_oc{i} = trn{i}(:,1); 

end 

  

[new_oc map] = MCdata(old_oc); 

 

map 

 

map = 

 

    0.0030 

   10.0080 

   20.0080 

   25.0080 

   35.0080 

   42.0080 
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t = 1:length(old_oc{1}); 

figure 

plotyy(t,old_oc{1},t,new_oc{1}) 

legend(‘Original OC’,’New OC’) 
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MCprobs 

Calculate the transition probability matrix and initial state probability vector 

Syntax:   

[Q u] = MCPROBS(operatingconditions)  

Description: 

MCPROBS calculates the transition and initial condition probabilities.  This function calculates 

the transition probability matrix and the initial condition probability vector for a Type II Markov 

Chain model  

[Q u] = MCPROBS(operatingconditions) calculates the transition probability matrix (Q) and the 

initial condition vector (u) for a Type II Markov Chain model using the operating condition 

progressions to failure contained in the cell array operatingconditions. 

Example: 

 

load PHMchalldata 

whos   

 

  Name        Size                Bytes  Class     Attributes 

 

  RUL       259x1                  2072  double               

  trn         1x260            10337328  cell                 

  tst         1x259             6541812  cell                  

 

old_oc = cell(size(trn)); 

for i = 1:length(trn) 
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    old_oc{i} = trn{i}(:,1); 

end 

  

[new_oc map] = MCdata(old_oc); 

 

[Q u] = MCprobs(new_oc) 

 

Q = 

 

    0.1474    0.1520    0.1512    0.1521    0.1430    0.2544 

    0.1440    0.1508    0.1502    0.1472    0.1524    0.2554 

    0.1455    0.1466    0.1517    0.1468    0.1588    0.2506 

    0.1543    0.1568    0.1479    0.1507    0.1415    0.2488 

    0.1502    0.1551    0.1542    0.1465    0.1511    0.2431 

    0.1536    0.1460    0.1518    0.1488    0.1500    0.2498 

 

 

u = 

 

    0.1577    0.1346    0.1231    0.1885    0.1385    0.2577
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optparam 

Identify near-optimal prognostic parameter 

Syntax:   

param = OPTPARAM(inputs, 'flag', value, ...)  

Description: 

This function uses Genetic Algorithms and parameter suitability metrics to identify a near-

optimal prognostic parameter from several data sources.  

param = OPTPARAM(inputs, 'flag', value, ...) identifies a near-optimal prognostic parameter 

from the available data in the cell array inputs.  The function uses genetic algorithms to optimize 

the weights in a linear combination of the available signal inputs.  Function returns a structure, 

param, which includes the resulting weights and all information needed to obtain the parameter 

from a new data run using function PARAMGEN. Flag/value pairs may be set to any of the 

following: 

'inputs' ('all'):   Determines how many of the inputs should be considered by the GA.  Can be set 

to 'all', indicating that all should be used, or 'subset', indicating that a subset of useful parameters 

should be used. 

'cutoff' (1.5):   Cutoff value for determining which input parameters are useful when choosing a 

subset of inputs for optimization. 

'fitness' (sum of M,P,T): Identifies the fitness function to be used, input as @fitness. 

fitness(w,inputs) must be a matlab m-file which takes only the candidate solution from the GA 

and the cell array of possible inputs to determine the fitness of a candidate solution. 

'fitweights' ([1 1 1]): A 1x3 row vector of weights which gives the weight of each of the three 

suitability metrics in determining the fitness. The first entry corresponds to monotonicity, the 

second to prognosability, and the third to trendability. 

'initpop' ([]):   Any candidate weightings that the GA should consider. If visual inspection or 

expert analysis has lead to any suitable parameters, these can be included in the GA to allow it to 

explicitly consider them in the optimization.  They should be included as an nXm matrix where n 

is the number of possible prognostic parameters to be included and m is the number of candidate 
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inputs to the parameter.  Each row should contain the weights associated with one possible 

parameter. 

'group' (one group): Multiple prognostic parameters may be optimized to compare groups. 

Associated value must be a cell array of matrices where each matrix indicates the runs included in 

a specific group.  Groups may be overlapping. Output in this case will be a structure array where 

the ith entry corresponds to the optimum parameter for the ith group. 

'smoothing' (false): May be set to 'true' or 'false', indicates whether the resulting parameter 

should be smoothed prior to final model development. 

Example: 

 

load PHMchalldata_monitoringresults   

whos 

 

  Name      Size               Bytes  Class    Attributes 

 

  Fhyp      1x260            9060632  cell                

  pred      1x260            9060632  cell                

  res       1x260            9060632  cell                

 

param = optparam(res,'inputs','subset','cutoff',1.5) 

 

param =  

 

      weights: [0.2497 0.1287 0.2514 5.0065 3.1495 0.4695] 

       inputs: [4 5 6 13 16 18] 
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       cutoff: 2 

      fitness: @(x)param.fitness(x,inputs) 

    smoothing: 0 
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paramfit 

Prognostic parameter fitness 

Syntax:   

fitness = PARAMFIT(weights,inputs)  

fitness = PARAMFIT(weights,inputs,suitabilityweights) 

Description: 

PARAMFIT determines the fitness of a candidate prognostic parameter.  This function 

determines the fitness of a candidate prognostic parameter by calculating the sum of 

monotonicity, prognosability, and trendability.  These three prognostics metrics are computed 

using the function PPMETRICS.   

fitness = PARAMFIT(weights,inputs) calculates the fitness of a linear combination of inputs, 

weighted according to the row vector weight, as the sum of the parameter suitability metrics 

monotonicity, prognosability, and trendability.   

fitness = PARAMFIT(weights,inputs,suitabilityweights) calculates the fitness of a linear 

combination of inputs, weighted according to the row vector weight, as the weighted sum of the 

parameter suitability metrics monotonicity, prognosability, and trendability, where 

suitabilityweights is a 1x3 row vector with the weight of monotonicity in the first entry, 

prognosability in the second, and trendability in the third.   

fitness = PARAMFIT(weights,inputs,suitabilityweights,filter) filters the resulting prognostic 

parameter before calculating the suitability.  An exponential filter is used via expfilt(). 

Example: 

 

load PHMchalldata_monitoringresults 

whos 

 

  Name      Size               Bytes  Class    Attributes 
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  Fhyp      1x260            9060632  cell                

  pred      1x260            9060632  cell                

  res       1x260            9060632  cell  

 

fitness = paramfit(ones(1,21),res) 

 

fitness = 

 

   -1.0485 
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paramgen 

Generate a population of prognostic parameters 

Syntax:   

progparam = PARAMGEN(param_struct,inputs)  

progparam = PARAMGEN(param_struct,inputs,time)  

Description: 

This function generates a population of prognostic parameters according to the options saved in 

the structure param_struct.   

progparam = PARAMGEN(param_struct,inputs) creates a population of prognostic parameters 

using the options saved in param_struct and the candidate inputs in the cell array inputs. 

OPTPARAM() can be used to generate the parameter structure. 

progparam = PARAMGEN(param_struct,inputs,time) creates a population of prognostic 

parameters which includes the time variable for each case in the first column and the prognostic 

parameter in the second.  Both inputs and time should be cell arrays where the number of 

observations (rows) in each cell of inputs should be equal to the corresponding cell of time.  

PARAMGEN calls also produce a plot of the population of prognostic parameters. 

progparam = PARAMGEN(...,plot) plots resulting prognostic parameters if set to true. Default is 

false. 

Example: 

 

load PHMchalldata_ga 

load PHMchalldata_monitoringresults 

whos 

 

  Name       Size               Bytes  Class     Attributes 
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  Fhyp       1x260            9060632  cell                 

  m          1x1                    8  double               

  p          1x1                    8  double               

  par        1x260             459192  cell                 

  param      1x1                 1017  struct               

  pred       1x260            9060632  cell                 

  res        1x260            9060632  cell                 

  t          1x1                    8  double   

 

prognosticparameter = paramgen(param,res,true); 
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ppmetrics 

Prognostic parameter suitability metrics 

Syntax:    

[monotonicity prognosability trendability] = PPMETRICS(params) 

Description: 

This function characterizes the appropriateness of a prognostic parameter based on three metrics.   

[monotonicity prognosability trendability] = PPMETRICS(params) evaluates the population of 

prognostic parameters contained in the cell array params for three metrics of adequacy. 

Montonicity measures the general increasing or decreasing trend of the parameter.  Because the 

assumption is made that systems do not self heal and no corrective action is taken, prognostic 

parameters are assumed to be monotonic. This assumption may not be valid for some systems 

such as batteries that do exhibit some self healing during periods of rest, or systems which 

experience some outside intervention to improve the condition. 

Prognosability is a measure of the variance of the failure values for a population of parameters. 

Trendability characterizes how well a population of parameters can be fit by the same functional 

form. It measures the similarity of the general trend of the parameter for a population of systems. 

Example: 

 

load PHMchalldata_ga 

load PHMchalldata_monitoringresults 

whos 

 

  Name       Size               Bytes  Class     Attributes 

 

  Fhyp       1x260            9060632  cell                 
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  m          1x1                    8  double               

  p          1x1                    8  double               

  par        1x260             459192  cell                 

  param      1x1                 1017  struct               

  pred       1x260            9060632  cell                 

  res        1x260            9060632  cell                 

  t          1x1                    8  double   

 

prognosticparameter = paramgen(param,res,true); 

 

[m p t] = ppmetrics(prognosticparameter) 

m = 

    0.6916 

p = 

    0.8674 

t = 

    0.8684 
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residgen 

Generate monitoring system residuals using a PEM model	

Syntax:   

RESID = RESIDGEN(model,data)  

Description: 

This function uses a PEM model to calculate the residuals of a population of systems.   

RESID = RESIDGEN(model,data) generates residuals using the previously developed PEM 

toolbox model and a cell array of data for a population of systems. Note that the generated 

residuals are predictions - actual. 

Example: 

 

load PHMchalldata 

load PHMchalldata_models 

whos 

 

  Name           Size                Bytes  Class     Attributes 

 

  Groups         1x2                   456  cell                 

  RUL          259x1                  2072  double               

  model          1x1               1055382  struct               

  test        1986x21               333648  double               

  train       3972x21               667296  double               

  trn            1x260            10350848  cell                 

  tst            1x259             6555280  cell                 
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  val         1987x21               333816  double             

 

trn_g1 = cell(size(trn)); 

for i = 1:length(trn) 

   trn_g1{i} = trn{i}(:,Groups{1}); 

end 

 

resid = residgen(model,trn_g1);   

 

whos 

  Name           Size                Bytes  Class     Attributes 

 

  Groups         1x2                   456  cell                 

  RUL          259x1                  2072  double               

  i              1x1                     8  double               

  model          1x1               1055382  struct               

  resid          1x260             9060632  cell                 

  test        1986x21               333648  double               

  train       3972x21               667296  double               

  trn            1x260            10350848  cell                 

  trn_g1         1x260             9060632  cell                 

  tst            1x259             6555280  cell                 

  val         1987x21               333816  double   
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figure 

plot(resid{1}) 

xlabel('Observation') 

ylabel('Residual')             
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runGPM 

Run a GPM prognostic model 

Syntax:   

RUL = RUNGPM(model,currentparam)   

RUL = RUNGPM(model,timestamp,currentparam)  

Description: 

This function makes RUL estimates using a general path model.   

RUL = RUNGPM(model,currentparam)  makes prognostic estimates using a Type III model.  

'model' should be of type 'gpm'.  'currentparam' may be a column vector, matrix, or cell array. If 

only one system is under surveillance, currentparam should be a column vector containing 

observations of that system up to the current time.  If multiple systems are under surveillance, and 

parameter observations are available for the same time steps for each system, currentparam may 

be a matrix whose columns contain the parameter observations for a single system.  If multiple 

systems are under surveillance which have been running for different amounts of time, 

currentparam may be a cell array containing the parameter observations for each system in a 

column vector contained in separate cells. Here, it is assumed that observations are made every 

time unit, with an equal sampling interval.  Each cell is an n x 1 matrix of parameters at equal 

time intervals or an n x 2 matrix of time and parameters.  

 

RUL = RUNGPM(model,timestamp,currentparam) can be used when the sampling interval is not 

equal across observations.  If currentparam is a column vector, then timestamp should also be a 

column vector.  If currentparam is a matrix, then timestamp may be a column vector of times (if 

each unit is surveyed at the same time) or it may be a matrix of times (if surveillance times for 

each unit are different).   

RUL = RUNGPM(model,currentparam,typeImodel,typeIImodel) takes in a Type I and/or Type II 

MC model to be used as priors for the GPM. The prior models are standard PEP generated 

prognostic structures. RUNGPM(model, currentparam, phmmodel, covariates) if a PHM model is 

used, immediately after input a cases x 1 array of covariates 
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RUL = RUNGPM(...) returns a structure of the estimated RUL, the Monte Carlo standard 

deviation, the associated 95% confidence intervals, and the model structure with an updated 

Bayesian prior for future estimates.  No other fields are changed. 

 

Example: 

load degradation 

whos 

  Name          Size            Bytes  Class     Attributes 

 

  RULs          1x5                40  double               

  failed        1x25            15376  cell                 

  unfailed      1x5              1536  cell                 

 

model = initprog('gpm',failed) 

 

model =  

 

   type: 'GPM' 

         bayesian: 0 

              fit: {[@(x)x.^3]  [@(x)x.^2]  [@(x)x]  [@(x)1]} 

       ytransform: @(y)y 

         fiterror: 1.0582 

        threshold: [10.0134 0.5691] 
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    thresholdtype: 'pdf' 

        threshcon: 0.9500 

             npop: 1000 

    allownegative: 0 

 

RUL = runGPM(model,unfailed) 

 

      RUL: 51.3636 

        StdDev: 113.4787 

          CI95: [0 352.7522] 

    Parameters: [6.9446e-007 -1.5391e-004 0.0205 1.0690] 

    ParmStdDev: [4.0355e-014 6.2635e-009 7.7975e-005 0.0700] 

        Priors: {[]} 
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runMC 

Run a Markov Chain prognostic model 

Syntax:   

RUL = RUNMC(model,operatingconditions)  

RUL = RUNMC(model,'new')  

[RUL uncert] = RUNMC(…) 

Description: 

This function makes RUL estimates using a Type II MC model 

RUL = RUNMC(model,operatingconditions) makes prognostic estimates using a Type II Markov 

Chain model.  model should be of type 'MC'. operating conditions is a column vector of the 

operating conditions seen by the unit under test up to the current time.  If operatingconditions is a 

cell array of column vectors, one vector for the operation of a single unit to the current time, then 

RUL is a row vector of RUL times. 

RUL = RUNMC(model,'new') calculates the expected RUL of a system starting from new, with 

no information about its operating states. 

 [RUL uncert] = RUNMC(...) returns the RUL prediction and the associated 95% uncertainty 

interval. 

Example: 

 

load tire 

whos  

 

  Name        Size              Bytes  Class    Attributes 

 

  fail        1x100            303136  cell                
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  unfail      1x3                3592  cell    

 

model = initMC(fail); 

 

RUL = runMC(model,unfail) 

 

         RUL: [3x1 double] 

           StdDev: [3x1 double] 

             CI95: [3x2 double] 

    MonteCarloRUL: [3x1000 double]
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runPF 

Run PF prognostic model 

Syntax: 

RUL = RUNPF(model ,currentparam) 

RUL = RUNPF(model,timestamp,currentparam) 

[RUL uncert] = RUNPF(…) 

Description 

This function makes RUL estimates using a particle filtering model. 

RUL = RUNPF(model,currentparam)  makes prognostic estimates using a particle filtering 

model.  The model should be of type 'PF'. currentparam may be a column vector, matrix, or cell 

array. If only one system is under surveillance, currentparam should be a column vector 

containing observations of that system up to the current time. If multiple systems are under 

surveillance, and parameter observations are available for the same time steps for each system, 

currentparam may be a matrix whose columns contain the parameter observations for a single 

system. If multiple systems are under surveillance which have been running for different amounts 

of time, may be a cell array containing the parameter observations for each system in a column 

vector contained in separate cells. Here, it is assumed that observations are made every time unit, 

with an equal sampling interval. 

RUL = RUNPF(model,currentparam) may also be used for multiple systems under surveillance 

where the time stamp for each system is not the same. In this case, currentparam should be a cell 

array whose cells contain an nx2 matrix where the first column is the time stamp for that 

particular unit and the second column is the parameter values at each time.  

RUL = RUNPF(model,timestamp,currentparam) can be used when the sampling interval is not 

equal across observations. If currentparam is a column vector, then timestamp should also be a 

column vector.  If currentparam is a matrix, then timestamp may be a column vector of times (if 

each unit is surveyed at the same time) or it may be a matrix of times (if surveillance times for 

each unit are different). 
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 [RUL uncert] = RUNPF(...) returns the estimated RUL(s) and the associated 95% uncertainty 

interval(s).  

Example:  

load PFdata 

whos 

 

  Name            Size            Bytes  Class     Attributes 

 

  RUL_actual      1x50              400  double               

  gtdata_trn      1x50            65600  cell                 

  gtdata_tst      1x50            65600  cell                 

  trn_data        1x50            38088  cell                 

  tst_data        1x50            30904  cell     

 

model = initPF(trn_data); 

[RUL uncert] = runPF(model,tst_data); 

 

figure; hold on 

plot(RUL_actual,RUL,'o') 

plot(1:40,1:40,'r--') 

xlabel('Actual RUL (cycles)') 

ylabel('Estimated RUL (cycles)') 

title(['Particle Filter RUL Estimates: MAPE = ' num2str(mean((RUL-

RUL_actual')./RUL_actual'*100))]) 
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runPHM 

Run a Proportional Hazards prognostic model 

Syntax:   

[RUL uncert] = RUNPHM(model,covariates) 

Description: 

This function makes RUL estimates using a Proportional Hazards Model.   

 [RUL uncert] = RUNPHM(model,currentsystem) makes prognostic estimates using a 

Proportional Hazards model. currentsystem is an nx2 matrix where the first column is the current 

time for a particular system and the second column is the covariate value for that system. The 

output RUL is an nx1 matrix of RUL estimates based on the reliability confidence level and 

uncert is an nx2 matrix of 95% uncertainty intervals. 

Example:  

 

load PHdata 

whos 

 

  Name               Size            Bytes  Class     Attributes 

 

  baseline           1x1                 8  double               

  censoring         16x1               128  double               

  covariates        16x1               128  double               

  failuretimes      16x1               128  double               

  frequency         16x1               128  double 

 

model = initPHM(covariates,failuretimes,'baseline',baseline,... 
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    'frequency',frequency,'censoring',censoring); 

 

covariate = 1/(170+273); 

times = 0:500:2000; 

currentsystem = [times’ covariate*ones(5,1)];  

[RUL uncert] = runPHM(model,currentsystem) 

 

RUL =  

 

     RUL: [5x1 double] 

    CI95: [5x2 double] 
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runprog 

Run prognostic model 

Syntax:   

RUL = RUNPROG(model,...) 

RUL = RUNPROG(model,currenttime)  

RUL = RUNPROG(model) 

RUL = RUNPROG(model,currentenvir)  

RUL = RUNPHM(model,covariates)  

RUL = RUNPROG(model,currentparam)  

Description: 

This function estimates the Remaining Useful Life (RUL) using the model previously developed.   

For necessary inputs, please see the appropriate individual “run” functions: runTypeI, runMC, 

runShock, runPHM, runGPM, runPF. 

Example: 

For examples of each model type, please see the appropriate run functions, as listed above.  To 

utilize the runprog wrapper function, provide an initialized model of the appropriate model type. 
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runShock 

Run a shock prognostic model 

Syntax:    

RUL = RUNSHOCK(model,shocks)  

RUL = RUNSHOCK(model,shocks,operatingconditions)  

RUL = RUNSHOCK(model,shocks,condition) 

[RUL uncert] = RUNSHOCK(…) 

Description: 

This function makes RUL estimates using a Shock Model. 

RUL = RUNSHOCK(model,shocks) makes prognostic estimates using a Type II shock model.  

shocks is a vector of measurements, such as vibration or voltage, which indicate the measure of 

interest. shocks may be an nx2 matrix where the first column is the time stamp and the second 

column is the sensor measurement. 

RUL = RUNSHOCK(model,shocks,operatingconditions) considers the planned future operating 

condition in generating random shocks. operatingconditions may be a column vector of discrete 

condition indicators for possible future time, an nx2 matrix where the first column is the planned 

time steps and the second is the operating condition, or a single scalar indicating the operating 

condition for all future use. 

RUL = RUNSHOCK(model,shocks) makes prognostic estimates using a Type III shock model.  

shocks is a vector of measurements, such as vibration or voltage, which indicate the measure of 

interest.  In this case, model includes shock probabilities dependent on the current estimated 

equipment condition. 

RUL = RUNSHOCK(model,shocks,condition) makes prognostic estimates using a Type III shock 

model and the current measured equipment condition. 

 [RUL uncert] = RUNSHOCK(...) returns RUL predictions and the associated 95% uncertainty 

interval. 
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Example:  

 

load shockdata 

whos 

  Name          Size              Bytes  Class     Attributes 

  shocks        1x100            173376  cell                 

  test        193x1                1544  double   

 

model = initshock(shocks,'degdepend',true,'timeorder',1); 

t = [39 77 116 154]; 

RUL = NaN(4,1); 

uncert = NaN(4,2); 

for i = 1:4 

   [RUL(i) uncert(i,:)] = runShock(model,test(1:t(i))); 

end 

 

RUL = 

 

   78.0986 

   61.5199 

   38.5305 

   36.3906 
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uncert = 

 

   16.4980  210.4872 

    4.6990  184.0803 

         0  140.0638 

         0  148.2056 
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runTypeI 

Run a Type I prognostic model 

Syntax:	

 RUL = RUNTYPEI(model,currenttime)  

Description: 

This function makes RUL estimats using a Type I (reliability based) prognostics model. 

RUL = RUNTYPEI(model,currenttime) makes prognostic estimates for a component or system 

that has lasted to time currenttime using a Type I model. currenttime can be a scalar indicating the 

current time for a single component or system, or it may be a vector indicating the current time 

for a population of components or systems. The RUL estimate for each individual in the 

population is made independently. currenttime may be input as a column or row vector; the RUL 

predictions will be returned in the same format. 

perc defaults to .95, may be input in percent (1-100) or  decimal (0-1) 

RUL is calculated as the 0.5-percentile of the conditional probability             

Example:  

 

load failuretimes 

whos   

 

  Name                Size            Bytes  Class     Attributes 

 

  failuretimes      135x1              1080  double                 

 

model = inittypeI(failuretimes); 
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currenttime = [0 15 50 100 125]; 

RUL = runTypeI(model,currenttime) 

 

RUL =  

 

       RUL: [5x1 double] 

    StdDev: [5x1 double] 

      CI95: [5x2 double] 
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threshGPM 

Calculate GPM failure threshold 

Syntax:   

Threshold = THRESHGPM(prognosticparameters,fit,yt)  

Threshold = THRESHGPM(prognosticparameters,fit,yt,thresholdtype,threshcon) 

Description: 

This function calculates the critical failure threshold for a GPM model based on the full historic 

failure paths contained in 'progparam'.   

Threshold = THRESHGPM(prognosticparameters,fit,yt) determines the critical failure threshold 

for the paths contained in the cell array 'prognosticparameters'.  The function calculates a hard 

threshold as the conservative 95th percentile of the failure values for the historic paths.   

Threshold = THRESHGPM(prognosticparameters,fit,yt,thresholdtype,threshcon) determines the 

critical failure threshold using the type specified by 'thresholdtype'.  'thresholdtype' may be set to 

either: 

'hard' A constant value is used for the critical failure threshold. This value is the conservative 

95th quantile of the failure values for the historic paths. 

'pdf'  A distribution of critical threshold values is determined. The failure values are assumed 

to be normally distributed with mean and variance as determined by the historic paths.  The 

threshold distribution is returned as a 1x2 vector of the form [mean standarddeviation].   

'threshcon' indicates the confidence level at which the threshold is calculated from the failure 

values. 

Example:  

 

load PHMchalldata_ga 

load PHMchalldata_monitoringresults 

whos 
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  Name       Size               Bytes  Class     Attributes 

 

  Fhyp       1x260            9060632  cell                 

  m          1x1                    8  double               

  p          1x1                    8  double               

  par        1x260             459192  cell                 

  param      1x1                 1017  struct               

  pred       1x260            9060632  cell                 

  res        1x260            9060632  cell                 

  t          1x1                    8  double   

 

prognosticparameter = paramgen(param,res,true); 

 

[fit ytrans]=fitGPM(prognosticparameter) 

 

fit =  
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    @(x)x.^2    @(x)x    @(x)1 

 

 

ytrans =  

 

    @(y)y 

 

threshold = threshGPM(prognosticparameter,fit,ytrans) 

 

threshold = 

 

   -9.9524 

 

threshold = threshGPM(prognosticparameter,fit,ytrans,'pdf') 

 

threshold = 

 

  -10.9743    0.5743 
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threshPF 

Calculate PF failure threshold 

Syntax: 

Threshold = THRESHPF(prognosticparameters,fit,yt)  

Threshold = THRESHPF(prognosticparameters,fit,yt,thresholdtype,threshcon) 

Description: 

This function calculates the critical failure threshold for a PF model based on the full historic 

failure paths contained in 'progparam'.   

Threshold = THRESHPF(prognosticparameters,fit,yt) determines the critical failure threshold for 

the paths contained in the cell array 'prognosticparameters'.  The function calculates a hard 

threshold as the conservative 95th percentile of the failure values for the historic paths.   

Threshold = THRESHPF(prognosticparameters,fit,yt,thresholdtype,threshcon) determines the 

critical failure threshold using the type specified by 'thresholdtype'.  'thresholdtype' may be set to 

either: 

'hard' A constant value is used for the critical failure threshold. This value is the threshcon 

quantile of the failure values for the historic paths. 

'pdf'  A distribution of critical threshold values is determined. The failure values are assumed 

to be normally distributed with mean and variance as determined by the historic paths.  The 

threshold distribution is returned as a 1x2 vector of the form [mean standarddeviation].   

'threshcon' indicates the confidence level at which the threshold is calculated from the failure 

values. 

Example:  

 

load PFdata 

whos 
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  Name            Size            Bytes  Class     Attributes 

 

  RUL_actual      1x50              400  double               

  gtdata_trn      1x50            65600  cell                 

  gtdata_tst      1x50            65600  cell                 

  trn_data        1x50            38088  cell                 

  tst_data        1x50            30904  cell     

 

[fit xtransform] = fitPF(trn_data); 

 

threshold = threshPF(trn_data,fit,xtransform) 

 

threshold = 

 

    1.3540 

threshold = threshPF(trn_data,fit,xtransform,’pdf’) 

 

threshold = 

 

    1.5492    0.1044        
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wtd_quantile 

Calculate quantiles according to weighted inputs 

Syntax: 

Y = WTD_QUANTILE(X,W,Q) 

Description: 

This function estimates quantiles of a sample while considering weighted importance of each 

sample value 

Y = WTD_QUANTILE(X,W,Q) returns the quantiles of the values in X while considering 

weights of values given in W.  Q is a scalar or a vector of cumulative probability values.  Both X 

and W are vectors of the same size.  Y is the same size as Q, and Y(i) contains the P(i)-th quantile 

of X.  Linear interpolation is used to estimate the quantile based on the weights in W.  If the 

weights in W are equal, wtd_quatile() returns the same result as quantile() 

Example:  

 

x = rand(100,1); 

weights = rand(100,1); 

 

wtd_quantile(x,weights,0.5) 

 

ans = 

 

    0.5252 

 

 

wtd_quantile(x,ones(100,1),0.5) 
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ans = 

 

    0.5079 

 

 

quantile(x,0.5) 

 

ans = 

 

    0.5079 
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